28,199 research outputs found

    Learning sentiment from students’ feedback for real-time interventions in classrooms

    Get PDF
    Knowledge about users sentiments can be used for a variety of adaptation purposes. In the case of teaching, knowledge about students sentiments can be used to address problems like confusion and boredom which affect students engagement. For this purpose, we looked at several methods that could be used for learning sentiment from students feedback. Thus, Naive Bayes, Complement Naive Bayes (CNB), Maximum Entropy and Support Vector Machine (SVM) were trained using real students' feedback. Two classifiers stand out as better at learning sentiment, with SVM resulting in the highest accuracy at 94%, followed by CNB at 84%. We also experimented with the use of the neutral class and the results indicated that, generally, classifiers perform better when the neutral class is excluded

    Bounded Coordinate-Descent for Biological Sequence Classification in High Dimensional Predictor Space

    Full text link
    We present a framework for discriminative sequence classification where the learner works directly in the high dimensional predictor space of all subsequences in the training set. This is possible by employing a new coordinate-descent algorithm coupled with bounding the magnitude of the gradient for selecting discriminative subsequences fast. We characterize the loss functions for which our generic learning algorithm can be applied and present concrete implementations for logistic regression (binomial log-likelihood loss) and support vector machines (squared hinge loss). Application of our algorithm to protein remote homology detection and remote fold recognition results in performance comparable to that of state-of-the-art methods (e.g., kernel support vector machines). Unlike state-of-the-art classifiers, the resulting classification models are simply lists of weighted discriminative subsequences and can thus be interpreted and related to the biological problem

    One-Class Classification: Taxonomy of Study and Review of Techniques

    Full text link
    One-class classification (OCC) algorithms aim to build classification models when the negative class is either absent, poorly sampled or not well defined. This unique situation constrains the learning of efficient classifiers by defining class boundary just with the knowledge of positive class. The OCC problem has been considered and applied under many research themes, such as outlier/novelty detection and concept learning. In this paper we present a unified view of the general problem of OCC by presenting a taxonomy of study for OCC problems, which is based on the availability of training data, algorithms used and the application domains applied. We further delve into each of the categories of the proposed taxonomy and present a comprehensive literature review of the OCC algorithms, techniques and methodologies with a focus on their significance, limitations and applications. We conclude our paper by discussing some open research problems in the field of OCC and present our vision for future research.Comment: 24 pages + 11 pages of references, 8 figure
    • …
    corecore