6 research outputs found

    Learning for Advanced Motion Control

    Full text link
    Iterative Learning Control (ILC) can achieve perfect tracking performance for mechatronic systems. The aim of this paper is to present an ILC design tutorial for industrial mechatronic systems. First, a preliminary analysis reveals the potential performance improvement of ILC prior to its actual implementation. Second, a frequency domain approach is presented, where fast learning is achieved through noncausal model inversion, and safe and robust learning is achieved by employing a contraction mapping theorem in conjunction with nonparametric frequency response functions. The approach is demonstrated on a desktop printer. Finally, a detailed analysis of industrial motion systems leads to several shortcomings that obstruct the widespread implementation of ILC algorithms. An overview of recently developed algorithms, including extensions using machine learning algorithms, is outlined that are aimed to facilitate broad industrial deployment.Comment: 8 pages, 15 figures, IEEE 16th International Workshop on Advanced Motion Control, 202

    Physics-Guided Neural Networks for Inversion-based Feedforward Control applied to Linear Motors

    Full text link
    Ever-increasing throughput specifications in semiconductor manufacturing require operating high-precision mechatronics, such as linear motors, at higher accelerations. In turn this creates higher nonlinear parasitic forces that cannot be handled by industrial feedforward controllers. Motivated by this problem, in this paper we develop a general framework for inversion-based feedforward controller design using physics-guided neural networks (PGNNs). In contrast with black-box neural networks, the developed PGNNs embed prior physical knowledge in the input and hidden layers, which results in improved training convergence and learning of underlying physical laws. The PGNN inversion-based feedforward control framework is validated in simulation on an industrial linear motor, for which it achieves a mean average tracking error twenty times smaller than mass-acceleration feedforward in simulation.Comment: Submitted to 2021 IEEE Conference on Control Technology and Application

    Kernel-based identification of non-causal systems with application to inverse model control

    No full text
    Models of inverse systems are commonly encountered in control, e.g., feedforward. The aim of this paper is to address several aspects in identification of inverse models, including model order selection and dealing with unstable inverse systems that originate from inverting non-minimum phase dynamics. A kernel-based regularization framework is developed for identification of non-causal systems. It is shown that ‘unstable’ models can be viewed as bounded, but non-causal, operators. As the main contribution, a range of the required kernels for non-causal systems is developed, including non-causal stable spline kernels. Benefits of the approach are confirmed in an example, including non-causal feedforward control for non-minimum phase systems

    Kernel-based identification of non-causal systems with application to inverse model control

    Get PDF
    Models of inverse systems are commonly encountered in control, e.g., feedforward. The aim of this paper is to address several aspects in identification of inverse models, including model order selection and dealing with unstable inverse systems that originate from inverting non-minimum phase dynamics. A kernel-based regularization framework is developed for identification of non-causal systems. It is shown that ‘unstable’ models can be viewed as bounded, but non-causal, operators. As the main contribution, a range of the required kernels for non-causal systems is developed, including non-causal stable spline kernels. Benefits of the approach are confirmed in an example, including non-causal feedforward control for non-minimum phase systems
    corecore