Physics-Guided Neural Networks for Inversion-based Feedforward Control applied to Linear Motors

Abstract

Ever-increasing throughput specifications in semiconductor manufacturing require operating high-precision mechatronics, such as linear motors, at higher accelerations. In turn this creates higher nonlinear parasitic forces that cannot be handled by industrial feedforward controllers. Motivated by this problem, in this paper we develop a general framework for inversion-based feedforward controller design using physics-guided neural networks (PGNNs). In contrast with black-box neural networks, the developed PGNNs embed prior physical knowledge in the input and hidden layers, which results in improved training convergence and learning of underlying physical laws. The PGNN inversion-based feedforward control framework is validated in simulation on an industrial linear motor, for which it achieves a mean average tracking error twenty times smaller than mass-acceleration feedforward in simulation.Comment: Submitted to 2021 IEEE Conference on Control Technology and Application

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 02/01/2023