27,459 research outputs found

    Effects of Smoothing Functions in Cosmological Counts-in-Cells Analysis

    Get PDF
    A method of counts-in-cells analysis of galaxy distribution is investigated with arbitrary smoothing functions in obtaining the galaxy counts. We explore the possiblity of optimizing the smoothing function, considering a series of mm-weight Epanechnikov kernels. The popular top-hat and Gaussian smoothing functions are two special cases in this series. In this paper, we mainly consider the second moments of counts-in-cells as a first step. We analytically derive the covariance matrix among different smoothing scales of cells, taking into account possible overlaps between cells. We find that the Epanechnikov kernel of m=1m=1 is better than top-hat and Gaussian smoothing functions in estimating cosmological parameters. As an example, we estimate expected parameter bounds which comes only from the analysis of second moments of galaxy distributions in a survey which is similar to the Sloan Digital Sky Survey.Comment: 33 pages, 10 figures, accepted for publication in PASJ (Vol.59, No.1 in press

    Wavelet-based Estimation for Heteroskedasticity and Autocorrelation Consistent Variance-Covariance Matrices

    Get PDF
    As is well-known, a heteroskedasticity and autocorrelation consistent covariance matrix is proportional to a spectral density matrix at frequency zero and can be consistently estimated by such popular kernel methods as those of Andrews-Newey-West. In practice, it is difficult to estimate the spectral density matrix if it has a peak at frequency zero, which can arise when there is strong autocorrelation, as often encountered in economic and financial time series. Kernels, as a local averaging method, tend to underestimate the peak, thus leading to strong overrejection in testing and overly narrow confidence intervals in estimation. As a new mathematical tool generalizing Fourier transform, wavelet transform is a powerful tool to investigate such local properties as peaks and spikes, and thus is suitable for estimating covariance matrices. In this paper, we propose a class of wavelet estimators for the covariance matrices of econometric parameter estimators. We show the consistency of the wavelet-based covariance estimators and derive their asymptotic mean squared errors, which provide insight into the smoothing nature of wavelet estimation. We propose a data-driven method to select the finest scale---the smoothing parameter in wavelet estimation, making the wavelet estimators operational in practice. A simulation study compares the finite sample performances of the wavelet estimators and the kernel counterparts. As expected, the wavelet method outperforms the kernel method when there exists relatively strong autocorrelation in the data.

    Smoothing and mean-covariance estimation of functional data with a Bayesian hierarchical model

    Get PDF
    Functional data, with basic observational units being functions (e.g., curves, surfaces) varying over a continuum, are frequently encountered in various applications. While many statistical tools have been developed for functional data analysis, the issue of smoothing all functional observations simultaneously is less studied. Existing methods often focus on smoothing each individual function separately, at the risk of removing important systematic patterns common across functions. We propose a nonparametric Bayesian approach to smooth all functional observations simultaneously and nonparametrically. In the proposed approach, we assume that the functional observations are independent Gaussian processes subject to a common level of measurement errors, enabling the borrowing of strength across all observations. Unlike most Gaussian process regression models that rely on pre-specified structures for the covariance kernel, we adopt a hierarchical framework by assuming a Gaussian process prior for the mean function and an Inverse-Wishart process prior for the covariance function. These prior assumptions induce an automatic mean-covariance estimation in the posterior inference in addition to the simultaneous smoothing of all observations. Such a hierarchical framework is flexible enough to incorporate functional data with different characteristics, including data measured on either common or uncommon grids, and data with either stationary or nonstationary covariance structures. Simulations and real data analysis demonstrate that, in comparison with alternative methods, the proposed Bayesian approach achieves better smoothing accuracy and comparable mean-covariance estimation results. Furthermore, it can successfully retain the systematic patterns in the functional observations that are usually neglected by the existing functional data analyses based on individual-curve smoothing.Comment: Submitted to Bayesian Analysi

    Functional Regression

    Full text link
    Functional data analysis (FDA) involves the analysis of data whose ideal units of observation are functions defined on some continuous domain, and the observed data consist of a sample of functions taken from some population, sampled on a discrete grid. Ramsay and Silverman's 1997 textbook sparked the development of this field, which has accelerated in the past 10 years to become one of the fastest growing areas of statistics, fueled by the growing number of applications yielding this type of data. One unique characteristic of FDA is the need to combine information both across and within functions, which Ramsay and Silverman called replication and regularization, respectively. This article will focus on functional regression, the area of FDA that has received the most attention in applications and methodological development. First will be an introduction to basis functions, key building blocks for regularization in functional regression methods, followed by an overview of functional regression methods, split into three types: [1] functional predictor regression (scalar-on-function), [2] functional response regression (function-on-scalar) and [3] function-on-function regression. For each, the role of replication and regularization will be discussed and the methodological development described in a roughly chronological manner, at times deviating from the historical timeline to group together similar methods. The primary focus is on modeling and methodology, highlighting the modeling structures that have been developed and the various regularization approaches employed. At the end is a brief discussion describing potential areas of future development in this field
    corecore