1 research outputs found

    Sharing GPUs for Real-Time Autonomous-Driving Systems

    Get PDF
    Autonomous vehicles at mass-market scales are on the horizon. Cameras are the least expensive among common sensor types and can preserve features such as color and texture that other sensors cannot. Therefore, realizing full autonomy in vehicles at a reasonable cost is expected to entail computer-vision techniques. These computer-vision applications require massive parallelism provided by the underlying shared accelerators, such as graphics processing units, or GPUs, to function “in real time.” However, when computer-vision researchers and GPU vendors refer to “real time,” they usually mean “real fast”; in contrast, certifiable automotive systems must be “real time” in the sense of being predictable. This dissertation addresses the challenging problem of how GPUs can be shared predictably and efficiently for real-time autonomous-driving systems. We tackle this challenge in four steps. First, we investigate NVIDIA GPUs with respect to scheduling, synchronization, and execution. We conduct an extensive set of experiments to infer NVIDIA GPU scheduling rules, which are unfortunately undisclosed by NVIDIA and are beyond access owing to their closed-source software stack. We also expose a list of pitfalls pertaining to CPU-GPU synchronization that can result in unbounded response times of GPU-using applications. Lastly, we examine a fundamental trade-off for designing real-time tasks under different execution options. Overall, our investigation provides an essential understanding of NVIDIA GPUs, allowing us to further model and analyze GPU tasks. Second, we develop a new model and conduct schedulability analysis for GPU tasks. We extend the well-studied sporadic task model with additional parameters that characterize the parallel execution of GPU tasks. We show that NVIDIA scheduling rules are subject to fundamental capacity loss, which implies a necessary total utilization bound. We derive response-time bounds for GPU task systems that satisfy our schedulability conditions. Third, we address an industrial challenge of supplying the throughput performance of computer-vision frameworks to support adequate coverage and redundancy offered by an array of cameras. We re-think the design of convolution neural network (CNN) software to better utilize hardware resources and achieve increased throughput (number of simultaneous camera streams) without any appreciable increase in per-frame latency (camera to CNN output) or reduction of per-stream accuracy. Fourth, we apply our analysis to a finer-grained graph scheduling of a computer-vision standard, OpenVX, which explicitly targets embedded and real-time systems. We evaluate both the analytical and empirical real-time performance of our approach.Doctor of Philosoph
    corecore