3 research outputs found

    Detection algorithms for spatial data

    Get PDF
    This dissertation addresses the problem of anomaly detection in spatial data. The problem of landmine detection in airborne spatial data is chosen as the specific detection scenario. The first part of the dissertation deals with the development of a fast algorithm for kernel-based non-linear anomaly detection in the airborne spatial data. The original Kernel RX algorithm, proposed by Kwon et al. [2005a], suffers from the problem of high computational complexity, and has seen limited application. With the aim to reduce the computational complexity, a reformulated version of the Kernel RX, termed the Spatially Weighted Kernel RX (SW-KRX), is presented. It is shown that under this reformulation, the detector statistics can be obtained directly as a function of the centered kernel Gram matrix. Subsequently, a methodology for the fast computation of the centered kernel Gram matrix is proposed. The key idea behind the proposed methodology is to decompose the set of image pixels into clusters, and expediting the computations by approximating the effect of each cluster as a whole. The SW-KRX algorithm is implemented for a special case, and comparative results are compiled for the SW-KRX vis-à-vis the RX anomaly detector. In the second part of the dissertation, a detection methodology for buried mine detection is presented. The methodology is based on extraction of color texture information using cross-co-occurrence features. A feature selection methodology based on Bhattacharya coefficients and principal feature analysis is proposed and detection results with different feature-based detectors are presented, to demonstrate the effectiveness of the proposed methodology in the extraction of useful discriminatory information --Abstract, page iii

    Physics-Based Detection of Subpixel Targets in Hyperspectral Imagery

    Get PDF
    Hyperspectral imagery provides the ability to detect targets that are smaller than the size of a pixel. They provide this ability by measuring the reflection and absorption of light at different wavelengths creating a spectral signature for each pixel in the image. This spectral signature contains information about the different materials within the pixel; therefore, the challenge in subpixel target detection lies in separating the target's spectral signature from competing background signatures. Most research has approached this problem in a purely statistical manner. Our approach fuses statistical signal processing techniques with the physics of reflectance spectroscopy and radiative transfer theory. Using this approach, we provide novel algorithms for all aspects of subpixel detection from parameter estimation to threshold determination. Characterization of the target and background spectral signatures is a key part of subpixel detection. We develop an algorithm to generate target signatures based on radiative transfer theory using only the image and a reference signature without the need for calibration, weather information, or source-target-receiver geometries. For background signatures, our work identifies that even slight estimation errors in the number of background signatures can severely degrade detection performance. To this end, we present a new method to estimate the number of background signatures specifically for subpixel target detection. At the core of the dissertation is the development of two hybrid detectors which fuse spectroscopy with statistical hypothesis testing. Our results show that the hybrid detectors provide improved performance in three different ways: insensitivity to the number of background signatures, improved detection performance, and consistent performance across multiple images leading to improved receiver operating characteristic curves. Lastly, we present a novel adaptive threshold estimate via extreme value theory. The method can be used on any detector type - not just those that are constant false alarm rate (CFAR) detectors. Even on CFAR detectors our proposed method can estimate thresholds that are better than theoretical predictions due to the inherent mismatch between the CFAR model assumptions and real data. Additionally, our method works in the presence of target detections while still estimating an accurate threshold for a desired false alarm rate
    corecore