97,928 research outputs found

    A Unification of Ensemble Square Root Kalman Filters

    Get PDF
    In recent years, several ensemble-based Kalman filter algorithms have been developed that have been classified as ensemble square-root Kalman filters. Parallel to this development, the SEIK (Singular ``Evolutive'' Interpolated Kalman) filter has been introduced and applied in several studies. Some publications note that the SEIK filter is an ensemble Kalman filter or even an ensemble square-root Kalman filter. This study examines the relation of the SEIK filter to ensemble square-root filters in detail. It shows that the SEIK filter is indeed an ensemble-square root Kalman filter. Furthermore, a variant of the SEIK filter, the Error Subspace Transform Kalman Filter (ESTKF), is presented that results in identical ensemble transformations to those of the Ensemble Transform Kalman Filter (ETKF) while having a slightly lower computational cost. Numerical experiments are conducted to compare the performance of three filters (SEIK, ETKF, and ESTKF) using deterministic and random ensemble transformations. The results show better performance for the ETKF and ESTKF methods over the SEIK filter as long as this filter is not applied with a symmetric square root. The findings unify the separate developments that have been performed for the SEIK filter and the other ensemble square-root Kalman filters

    Controlling overestimation of error covariance in ensemble Kalman filters with sparse observations: A variance limiting Kalman filter

    Full text link
    We consider the problem of an ensemble Kalman filter when only partial observations are available. In particular we consider the situation where the observational space consists of variables which are directly observable with known observational error, and of variables of which only their climatic variance and mean are given. To limit the variance of the latter poorly resolved variables we derive a variance limiting Kalman filter (VLKF) in a variational setting. We analyze the variance limiting Kalman filter for a simple linear toy model and determine its range of optimal performance. We explore the variance limiting Kalman filter in an ensemble transform setting for the Lorenz-96 system, and show that incorporating the information of the variance of some un-observable variables can improve the skill and also increase the stability of the data assimilation procedure.Comment: 32 pages, 11 figure

    Comparing Kalman Filters and Observers for Power System Dynamic State Estimation with Model Uncertainty and Malicious Cyber Attacks

    Full text link
    Kalman filters and observers are two main classes of dynamic state estimation (DSE) routines. Power system DSE has been implemented by various Kalman filters, such as the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). In this paper, we discuss two challenges for an effective power system DSE: (a) model uncertainty and (b) potential cyber attacks. To address this, the cubature Kalman filter (CKF) and a nonlinear observer are introduced and implemented. Various Kalman filters and the observer are then tested on the 16-machine, 68-bus system given realistic scenarios under model uncertainty and different types of cyber attacks against synchrophasor measurements. It is shown that CKF and the observer are more robust to model uncertainty and cyber attacks than their counterparts. Based on the tests, a thorough qualitative comparison is also performed for Kalman filter routines and observers.Comment: arXiv admin note: text overlap with arXiv:1508.0725
    • …
    corecore