5 research outputs found

    Optimized Synthetic Aperture Radar (SAR) processing for Airborne UWB FMCW Radar

    Get PDF
    Remote Sensing of snow covered sea ice in melting Polar Regions has become crucial in estimating the results of increased global warming and to overcome the Earth’s energy imbalance. And to accurately map the snow models over sea ice, it has become essential to build radar systems that has increased sensitivity and to use post processing techniques that enhance the performance. The Center for Remote Sensing of Ice Sheets (CReSIS) at KU has developed ultra-wideband snow radar system that operates over 2-18 GHz frequency range to effectively measure the snow thickness including very thin snow cover and map the snow-ice and snow-ice interfaces precisely. Synthetic Aperture Radar (SAR) processing is one of the post processing technique employed to further increase the sensitivity of the radar in terms of resolution and SNR. In this thesis, a time domain correlation SAR technique which is essentially a matched filter application is described and implemented. It is verified initially with an ideal simulated point target data and then with point target data collected by the snow radar system over sea-ice. Both gave the results as expected with the theoretical values. It is also shown how noise is multiplied with increasing synthetic aperture length. The effect of aircraft motion non-linearities on SAR processing are also studied at different altitudes. To overcome the effect of non-linearities and multiplicative noise, a multilooking SAR processing is proposed and explained. This is then applied to the field data collected by the snow radar in 2014 to 2017 over sea ice and observed that the azimuth resolution is improved by 4 m approximately. The optimum parameters like SAR aperture length and the number of looks are extracted based on the results of SAR processing on various data sets. Finally, a comparison of SAR application to low and high altitude data sets collected in 2016 over the same region is also provided to show that longer apertures are required for high altitude to achieve same amount of improvement in SNR and azimuth resolution

    Basal Conditions of Petermann Glacier and Jakobshavn Isbrae derived from Airborne Ice Penetrating Radar Measurements

    Get PDF
    Understanding ice dynamics and ice basal conditions is important because of their impacts on sea level rise. Radio echo sounding has been extensively used for characterizing the ice sheets. The radar reflectivity of the ice bed is of special importance because it can discriminate frozen and thawed ice beds. The knowledge of the spatial distribution of basal water is crucial in explaining the flow velocity and stability of glaciers and ice sheets. Basal echo reflectivity used to identify the areas of basal melting can be calculated by compensating ice bed power for geometric losses, rough interface losses, system losses and englacial attenuation. Two important outlet glaciers of Greenland, Petermann glacier and Jakobshavn isbrae have been losing a lot of ice mass in recent years, and are therefore studied to derive its basal conditions from airborne radar surveys in this thesis. The ice surface and bed roughness of these glaciers are estimated using Radar Statistical Reconnaissance (RSR) method and validated using roughness derived from NASA’s Airborne Topographic Mapper (ATM) and Ku band altimeter. Englacial attenuation is modeled using Schroeder’s variable attenuation method. After compensating for these losses, the basal reflectivity for the two glaciers is estimated and validated using cross over analysis, geophysics, hydraulic potential, abruptive index and coherence index. The areas of basal melting i.e. areas with higher reflectivity are identified. Petermann glacier is found to have alternate frozen and thawed regions explaining the process of ice movement by friction and freezing. Due to the lack of topographic pinning the glacier is subject to higher ice flow speed. Jakobshavn glacier has several areas of basal melting scattered in the catchment area with most concentration near the glacier front which is likely due to surface water infiltration into ice beds via moulins and sinks. The ice bed channels and retrograde slope of this glacier are also important in routing subglacial water and ice mass. The basal conditions of these two glaciers presented in this study can help in modeling the behavior of these glaciers in the future

    Development of Compact UWB Transmit Receive Modules and Filters on Liquid Crystal Polymer for Radar

    Get PDF
    This thesis presents the design and development of various microwave components for an airborne snow-probing radar with multi-gigahertz bandwidth and cm-scale vertical resolution. First, a set of ultra-wideband, modular transmit and receive modules with custom power sequencing circuits is presented. These modules were rapid-prototyped as an initial step toward the miniaturization of the radar’s front-end, using a combination of custom and COTS circuits. The transmitter and receiver modules operate in the 2–18 GHz range. Laboratory and field tests are discussed, demonstrating performance that is comparable to previous, connectorized implementations, while accomplishing a 5:1 size reduction. Next, a set of miniaturized band-pass and low-pass filters is developed and demonstrated. This work addressed the lack of COTS circuits with adequate performance in a sufficiently small form factor that is compatible with the planar integration required in a multi-chip module. The filters presented here were designed for manufacture on a multi-layer liquid crystal polymer (LCP) substrate. A detailed trade study to assess the effects of potential manufacturing tolerances is presented. A framework for the automated creation of panelized design variations was developed using CAD tools. Thirty-two design variations with two different types of launches (microstrip and grounded co-planar waveguide) were successfully simulated, fabricated and tested, showing good electrical performance both as individual filters and cascaded to offer outstanding out-of-band rejection. The size of the new filters is 1 cm x 1 cm x 150 μm, a vertical reduction of over 90% and reducing the total cascaded length by over 50%

    Doctor of Philosophy

    Get PDF
    dissertationRecent surface mass balance changes in space and time over the polar ice sheets need to be better constrained in order to estimate the ice-sheet contribution to sea-level rise. The mass balance of any ice body is obtained by subtracting mass losses from mass gains. In response to climate changes of the recent decades, ice-sheet mass losses have increased, making ice-sheet mass balance negative and raising sea level. In this work, I better quantify the mass gained by snowfall across the polar ice sheets; I target specific regions over both Greenland and West Antarctica where snow accumulation changes are occurring due to rising air temperature. Southeast Greenland receives 30% of the total snow accumulation of the Greenland ice sheet. In this work, I combine internal layers observed in ice-penetrating radar data with firn cores to derive the last 30 years of accumulation and to measure the spatial pattern of accumulation toward the southeast coastline. Below 1800 m elevation, in the percolation zone, significant surface melt is observed in the summer, which challenges both firn-core dating and internal-layer tracing. While firn-core drilling at 1500 m elevation, liquid water was found at ~20-m depth in a firn aquifer that persisted over the winter. The presence of this water filling deeper pore space in the firn was unexpected, and has a significant impact on the ice sheet thermal state and the estimate of mass balance made using satellite altimeters. Using a 400-MHz ice-penetrating radar, the extent of this widespread aquifer was mapped on the ground, and also more extensively from the air with a 750-MHz airborne radar as part of the NASA Operation IceBridge mission. Over three IceBridge flight campaigns (2011-2013), based on radar data, the firn aquifer is estimated to cover ~30,000 km2 area within the wet-snow zone of the ice sheet. I use repeated flightlines to understand the temporal variability of the water trapped in the firn aquifer and to simulate its lateral flow, following the gentle surface slope (< 1) and undulated topography of the ice sheet surface toward the ablation zone of the ice sheet. The fate of this water is currently unknown; water drainage into crevasses and at least partial runoff is inferred based on the analysis of radar profiles from different years. I also present results from a field expedition in West Antarctica, where data collection combined high-frequency (2-18 GHz) radar data and shallow (< 20 m) firn cores from Central West Antarctica, crossing the ice divide toward the Amundsen Sea. The radar-derived accumulation rates show a 75% increase (+0.20 m w.eq. y-1) of net snow accumulation from the ice divide, toward the Amundsen Sea for a 70-km transect, assuming annual isochrones being detected in the radar profile. On the Ross Sea side of the divide, with accumulation rates less than 0.25 m w.eq. y-1 and significant wind redistribution, only a multi-annual stratigraphy is detected in the radar profile. Using radar, I investigated the small-scale variability within a radius of ~1.5 km of one firn-core site, and I find that the averaged variation in accumulation-rate in this area is 0.1 m w.eq. y-1 in the upper 25-m of the firn column, which is 20% of the average accumulation rate

    Scattering Analysis and Ultra-Wideband Radar for High-Throughput Phenotyping of Wheat Canopies

    Get PDF
    Rising the yield of wheat crops is essential to meet the projected demands of future consumption and it is expected that most yield increases will be associated to improvements in biomass accumulation. Cultivars with canopy architectures that focus the light interception where photosynthetic-capacity is greater achieve larger biomass accumulation rates. Identifying varieties with improved traits could be performed with modern breeding methods, such as genomic-selection, which depend on genotype-phenotype mappings. Developing a non-destructive sensor with the capability of efficiently phenotyping wheat-canopy architecture parameters, such as height and vertical distribution of projected-leaf-area-density, would be useful for developing architecture-related genotype-phenotype maps of wheat cultivars. In this dissertation, new scattering analysis tools and a new 2-18 GHz radar system are presented for efficiently phenotyping the architecture of wheat canopies. The radar system presented was designed with the objective to measure the RCS profile of wheat canopies at close range. The frequency range (2-18 GHz), topology (Frequency-modulated-continuous-wave) and other radar parameters were chosen to meet that goal. Phase noise of self-interference signals is the main source of coherent and incoherent noise in FMCW radars. A new comprehensive noise analysis is presented, which predicts the power-spectral-density of the noise at the output of FMCW radars, including those related to phase noise. The new 2-18 GHz chirp generator is based on a phase-locked-loop that was designed with large loop bandwidth to suppress the phase noise of the chirp. Additionally, the radar RF front-end was designed to achieve low levels of LO-leakage and antenna feed-through, which are the main self-interference signals of FMCW radars. In addition to the radar system, a new efficient radar simulator was developed to predict the RCS waveforms collected from wheat canopies over the 2-18 GHz frequency range. The coherent radar simulator is based on novel geometric and fully-polarimetric scattering models of wheat canopies. The scattering models of wheat canopies, leaves with arbitrary orientation and curvature, stems and heads were validated using a full-wave commercial simulator and measurements. The radar simulator was used to derive retrieval algorithms of canopy height and projected-leaf-area-density from RCS profiles, which were tested with field-collected measurements. The retrieved heights and projected-leaf-area densities compare well against ruler measurements and image-based retrievals, respectively
    corecore