8 research outputs found

    Quantitative security of block ciphers:designs and cryptanalysis tools

    Get PDF
    Block ciphers probably figure in the list of the most important cryptographic primitives. Although they are used for many different purposes, their essential goal is to ensure confidentiality. This thesis is concerned by their quantitative security, that is, by measurable attributes that reflect their ability to guarantee this confidentiality. The first part of this thesis deals with well know results. Starting with Shannon's Theory of Secrecy, we move to practical implications for block ciphers, recall the main schemes on which nowadays block ciphers are based, and introduce the Luby-Rackoff security model. We describe distinguishing attacks and key-recovery attacks against block ciphers and show how to turn the firsts into the seconds. As an illustration, we recall linear cryptanalysis which is a classical example of statistical cryptanalysis. In the second part, we consider the (in)security of block ciphers against statistical cryptanalytic attacks and develop some tools to perform optimal attacks and quantify their efficiency. We start with a simple setting in which the adversary has to distinguish between two sources of randomness and show how an optimal strategy can be derived in certain cases. We proceed with the practical situation where the cardinality of the sample space is too large for the optimal strategy to be implemented and show how this naturally leads to the concept of projection-based distinguishers, which reduce the sample space by compressing the samples. Within this setting, we re-consider the particular case of linear distinguishers and generalize them to sets of arbitrary cardinality. We show how these distinguishers between random sources can be turned into distinguishers between random oracles (or block ciphers) and how, in this setting, one can generalize linear cryptanalysis to Abelian groups. As a proof of concept, we show how to break the block cipher TOY100, introduce the block cipher DEAN which encrypts blocks of decimal digits, and apply the theory to the SAFER block cipher family. In the last part of this thesis, we introduce two new constructions. We start by recalling some essential notions about provable security for block ciphers and about Serge Vaudenay's Decorrelation Theory, and introduce new simple modules for which we prove essential properties that we will later use in our designs. We then present the block cipher C and prove that it is immune against a wide range of cryptanalytic attacks. In particular, we compute the exact advantage of the best distinguisher limited to two plaintext/ciphertext samples between C and the perfect cipher and use it to compute the exact value of the maximum expected linear probability (resp. differential probability) of C which is known to be inversely proportional to the number of samples required by the best possible linear (resp. differential) attack. We then introduce KFC a block cipher which builds upon the same foundations as C but for which we can prove results for higher order adversaries. We conclude both discussions about C and KFC by implementation considerations

    Security Evaluation of MISTY Structure with SPN Round Function

    Get PDF
    This paper deals with the security of MISTY structure with SPN round function. We study the lower bound of the number of active s-boxes for differential and linear characteristics of such block cipher construction. Previous result shows that the differential bound is consistent with the case of Feistel structure with SPN round function, yet the situation changes when considering the linear bound. We carefully revisit such issue, and prove that the same bound in fact could be obtained for linear characteristic. This result combined with the previous one thus demonstrates a similar practical secure level for both Feistel and MISTY structures. Besides, we also discuss the resistance of MISTY structure with SPN round function against other kinds of cryptanalytic approaches including the integral cryptanalysis and impossible differential cryptanalysis. We confirm the existence of 6-round integral distinguishers when the linear transformation of the round function employs a binary matrix (i.e., the element in the matrix is either 0 or 1), and briefly describe how to characterize 5/6/7-round impossible differentials through the matrix-based method

    Revisiting Iterated Attacks in the Context of Decorrelation Theory

    Get PDF
    Iterated attacks are comprised of iterating adversaries who can make d plaintext queries, in each iteration to compute a bit, and are trying to distinguish between a random cipher C and the perfect cipher C* based on all bits. Vaudenay showed that a 2d-decorrelated cipher resists to iterated attacks of order d. when iterations have almost no common queries. Then, he first asked what the necessary conditions are for a cipher to resist a non-adaptive iterated attack of order d. I.e., whether decorrelation of order 2d-1 could be sufficient. Secondly, he speculated that repeating a plaintext query in different iterations does not provide any advantage to a non-adaptive distinguisher. We close here these two long-standing open problems negatively. For those questions, we provide two counter-intuitive examples. We also deal with adaptive iterated adversaries who can make both plaintext and ciphertext queries in which the future queries are dependent on the past queries. We show that decorrelation of order 2d protects against these attacks of order d. We also study the generalization of these distinguishers for iterations making non-binary outcomes. Finally, we measure the resistance against two well-known statistical distinguishers, namely, differential-linear and boomerang distinguishers and show that 4-decorrelation degree protects against these attacks

    A Salad of Block Ciphers

    Get PDF
    This book is a survey on the state of the art in block cipher design and analysis. It is work in progress, and it has been for the good part of the last three years -- sadly, for various reasons no significant change has been made during the last twelve months. However, it is also in a self-contained, useable, and relatively polished state, and for this reason I have decided to release this \textit{snapshot} onto the public as a service to the cryptographic community, both in order to obtain feedback, and also as a means to give something back to the community from which I have learned much. At some point I will produce a final version -- whatever being a ``final version\u27\u27 means in the constantly evolving field of block cipher design -- and I will publish it. In the meantime I hope the material contained here will be useful to other people

    Forgery-Resilience for Digital Signature Schemes

    Get PDF
    We introduce the notion of forgery-resilience for digital signature schemes, a new paradigm for digital signature schemes exhibiting desirable legislative properties. It evolves around the idea that, for any message, there can only be a unique valid signature, and exponentially many acceptable signatures, all but one of them being spurious. This primitive enables a judge to verify whether an alleged forged signature is indeed a forgery. In particular, the scheme considers an adversary who has access to a signing oracle and an oracle that solves a “hard” problem, and who tries to produce a signature that appears to be acceptable from a verifier’s point of view. However, a judge can tell apart such a spurious signature from a signature that is produced by an honest signer. This property is referred to as validatibility. Moreover, the scheme provides undeniability against malicious signers who try to fabricate spurious signatures and deny them later by showing that they are not valid. Last but not least, trustability refers to the inability of a malicious judge trying to forge a valid signature. This notion for signature schemes improves upon the notion of fail-stop signatures in different ways. For example, it is possible to sign more than one messages with forgery-resilient signatures and once a forgery is found, the credibility of a previously signed signature is not under question. A concrete instance of a forgery-resilient signature scheme is constructed based on the hardness of extracting roots of higher residues, which we show to be equivalent to the factoring assumption. In particular, using collision-free accumulators, we present a tight reduction from malicious signers to adversaries against the factoring problem. Meanwhile, a secure pseudorandom function ensures that no polynomially-bounded cheating verifier, who can still solve hard problems, is able to forge valid signatures. Security against malicious judges is based on the RSA assumption

    KFC- The Krazy Feistel Cipher

    No full text
    Abstract. We introduce KFC, a block cipher based on a three round Feistel scheme. Each of the three round functions has an SPN-like structure for which we can either compute or bound the advantage of the best d-limited adaptive distinguisher, for any value of d. Using results from the decorrelation theory, we extend these results to the whole KFC construction. To the best of our knowledge, KFC is the first practical (in the sense that it can be implemented) block cipher to propose tight security proofs of resistance against large classes of attacks, including most classical cryptanalysis (such as linear and differential cryptanalysis, taking hull effect in consideration in both cases, higher order differential cryptanalysis, the boomerang attack, differential-linear cryptanalysis, and others). 1 Introduction Most modern block ciphers are designed to resist a wide range of cryptanalytictechniques. Among them, one may cite linear cryptanalysis [19,20,23], differential cryptanalysis [7,8], as well as several variants such as impossible differentials [5],the boomerang attack [27] or the rectangle attack [6]. Proving resistance against all these attacks is often tedious and does not give any guarantee that a subtlenew variant would not break the construction. Rather than considering all known attacks individually, it would obviously be preferable to give a unique proof, validfor a family of attacks. In [26], Vaudenay shows that the decorrelation theory provides tools to provesecurity results in the Luby-Rackoff model [18], i.e., against adversaries only limited by the number of plaintext/ciphertext pairs they can access. Denoting d thisnumber of pairs, the adversaries are referred to a

    KFC- The Krazy Feistel Cipher

    No full text
    Abstract. We introduce KFC, a block cipher based on a three round Feistel scheme. Each of the three round functions has an SPN-like structure for which we can either compute or bound the advantage of the best d-limited adaptive distinguisher, for any value of d. Using results from the decorrelation theory, we extend these results to the whole KFC construction. To the best of our knowledge, KFC is the first practical (in the sense that it can be implemented) block cipher to propose tight security proofs of resistance against large classes of attacks, including most classical cryptanalysis (such as linear and differential cryptanalysis, taking hull effect in consideration in both cases, higher order differential cryptanalysis, the boomerang attack, differential-linear cryptanalysis, and others).
    corecore