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Abstract Iterated attacks are comprised of iterating adversaries who can make d plaintext queries, in
each iteration to compute a bit, and are trying to distinguish between a random cipher C and the perfect
cipher C∗ based on all bits.

Vaudenay showed that a 2d-decorrelated cipher resists to iterated attacks of order d when iterations
have almost no common queries. Then, he first asked what the necessary conditions are for a cipher
to resist a non-adaptive iterated attack of order d. I.e., whether decorrelation of order 2d − 1 could
be sufficient. Secondly, he speculated that repeating a plaintext query in different iterations does not
provide any advantage to a non-adaptive distinguisher. We close here these two long-standing open
problems negatively. For those questions, we provide two counter-intuitive examples.

We also deal with adaptive iterated adversaries who can make both plaintext and ciphertext queries
in which the future queries are dependent on the past queries. We show that decorrelation of order 2d
protects against these attacks of order d. We also study the generalization of these distinguishers for
iterations making non-binary outcomes.

Finally, we measure the resistance against two well-known statistical distinguishers, namely, differential-
linear and boomerang distinguishers and show that 4-decorrelation degree protects against these attacks.

Keywords block ciphers · decorrelation theory · iterated attacks · differential-linear distinguishers ·
boomerang distinguishers

1 Introduction

Unlike asymmetric cryptography, in which the security of a cryptosystem is provably reduced to a math-
ematical problem and guaranteed by an intractability assumption, the focus in symmetric cryptography
is often statistical cryptanalysis and, in the absence of a successful attack, a cryptosystem is believed to
be secure. For instance, once the crypto community has spent enough time scrutinizing a block cipher
and has found no successful attacks against its full round version, the block cipher is believed to be se-
cure. However, a different approach against block cipher cryptanalysis was pioneered by Nyberg [17]. She

Part of the results in this work were published in [5,6]. In this paper, the study of generalization of adaptive iterated
plaintext-ciphertext distinguishers is added; also the resistance against boomerang and differential-linear distinguishers are
analyzed by the techniques in Decorrelation Theory.
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formalized the notion of strength against differential cryptanalysis. Her work was followed by Chabaud
and Vaudenay [9] formalizing the notion of strength against linear cryptanalysis.

Decorrelation Theory, introduced by Vaudenay [22,25], encapsulates the techniques that guarantee
the provable resistance of block ciphers against a wide range of statistical cryptanalysis, including the
seminal differential and linear attacks, as well as their variants, for example the boomerang attack,
truncated differential attacks, and impossible differential attacks. The beauty of this theory is that it
can even guarantee resistance against some not-yet-discovered attacks that meet a certain broad criteria
in the model presented by Luby and Rackoff [14,15]. They prove the security of Feistel schemes by
assuming that the round function is random. However, their approach needs a very long secret key and
is not suitable in practice. Carter and Wegman [7,8], on the other hand, use derandomization techniques
for sampling pairwise independent numbers, which has inspired the notion of decorrelation in that it
measures the pseudorandomness with smaller keys and examines its effects against the adversaries.

It is worth mentioning here that perfect decorrelation of order d is equivalent to d-wise independence
[13]. Moreover, decorrelation of order d is also referred to as almost d-wise independence [1,16]. Further-
more, the concept of decorrelation is somewhat related to the notion of pseudorandom functions and
pseudorandom permutations except that we do not limit the time complexity of the distinguisher, but
only the number of queries are restricted.

The adversaries considered here can query d plaintexts and receive their corresponding ciphertexts,
but are unlimited in terms of computational power. When these plaintext/ciphertext pairs are chosen
randomly and independently from each other, we are dealing with non-adaptive d-limited adversaries,
as opposed to adaptive d-limited adversaries. These adversaries give rise to distinguishers of order d,
whether adaptive or otherwise, who are trying to distinguish between a random cipher C and the perfect
cipher C∗.

More formally, to a random cipher C, we define a d-wise distribution matrix [C]d (see Definition 3).
The decorrelation of C is the distance ‖[C]d − [C∗]d‖ between [C]d and [C∗]d defined by a matrix-norm
‖ · ‖ (see Definition 2).

Several block ciphers have been designed, whose security is proven by decorrelation techniques, see
for example DFC [18], NUT (n-Universal Transformation) families of block ciphers [10,19,21,25]. Using
similar techniques, Baignères and Finiasz propose two provably secure block ciphers to use in practice
called the block cipher C [3] and KFC [2]. Decorrelation Theory has been used in other results as well,
see for instance [4,20,22–24].

Vaudenay [25] shows how differential and linear attacks fit in the d-limited adversarial model by
introducing iterated attacks, which are simply constructed by iterating a non-adaptive d-limited dis-
tinguisher (see Algorithm 3). Linear and differential cryptanalysis can be formulated as non-adaptive
iterated attacks of order 1 and order 2, respectively, and the boomerang attack is an adaptive (chosen
plaintext and ciphertext) iterated attack of order 4. Moreover, he computes a bound on the advantage of
the d-limited adversaries by decorrelation techniques in the Luby-Rackoff model. This result is expressed
in the following theorem.

Theorem 1 [25] Let C be a cipher on a message space of cardinality M such that ‖[C]2d−[C∗]2d‖∞ ≤ ε,
for some given integer d ≤M/2, where C∗ is the perfect cipher. Let us consider a non-adaptive iterated
distinguisher of order d between C and C∗ with n iterations. We assume that a set of d plaintexts is
generated in each iteration in an independent way and following the same distribution. Moreover, we
define δ as the probability that two sets drawn with this distribution have a nonempty intersection. Then,
we bound the advantage of the adversary as

AdvANAI(d)
≤ 5

3

√(
2δ +

5d2

2M
+

3ε

2

)
n2 + nε.

This theorem shows that, in order to resist a non-adaptive iterated attack of order d with seldom
common queries, it is sufficient for a cipher to have the decorrelation of order 2d. However, whether
or not this is a necessary condition has not been addressed. Moreover, the bound given in the theorem
can be interpreted to imply that, perhaps, a high probability δ of having a common query increases the
bound of the attack. Despite this hint, Vaudenay in his EUROCRYPT ’99 paper [22] speculates that
having the same query to the oracle does not provide any advantage, but whether or not this is true has
been left open. We will settle both of these open questions.
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Our Contribution. Firstly, we show that the decorrelation of order 2d − 1 is not sufficient. We achieve
this by proposing a counterexample consisting of a 3-round Feistel cipher which is decorrelated to the
order 2d − 1 and, yet, we are able to mount a successful non-adaptive iterated distinguisher of order d
against it. Secondly, we propose another set of counterexamples where a higher probability of having
common queries surprisingly increases the advantage of the distinguisher. In particular, we show that
there is an iterated distinguisher of order 1 on a 2d-decorrelated cipher when the probability of having
at least one query in common in any two iterations is high, which is counterintuitive.

As a second contribution, we concentrate on adaptive iterated distinguishers who can adaptively
make plaintext and ciphertext queries. Allowing the adversary to make both plaintext and ciphertext
queries extends the security model and has already appeared in the literature. Indeed, the boomerang
attack [26] is an example of such an adversary. Studying these general distinguishers making adaptive
plaintext-ciphertext queries allows us to, for example, interpret Wagner’s boomerang attack [26] on
COCONUT98 [19,25], a perfect 2-decorrelated block cipher and provably secure against differential and
linear cryptanalyses and iterated attacks of order 1. Indeed, it could have resisted to Wagner’s attack
with a decorrelation of order 8.

A bound for the advantage of an adaptive iterated distinguisher of order d, who can make both plain-
text and ciphertext queries has not been computed yet. The significance of studying these distinguishers is
not hidden to anyone. Therefore, we prove the bound for the advantage of adaptive iterated distinguisher
of order d against a 2d-decorrelated cipher. It comes with no surprise that using this metric, we get a
looser, i.e., higher, upper bound for adaptive distinguishers than that for non-adaptive distinguishers
(see Theorem 1). We then generalize these distinguishers in a way that the outputs of iterations are not
binary anymore, take values from a set of integers, and prove the bound for this generalized version, as
well.

Finally, we measure the resistance against two well-known statistical distinguishers, namely, differential-
linear and boomerang distinguishers. We show that a cipher resisting these distinguishers needs to be
exactly 4-decorrelated. These results are better than the results obtained in Theorems 1 and 5 since a
cipher requires to be at most 4-decorrelated and 8-decorrelated according to these theorems, respectively.
So, a 4-decorrelation of COCONUT98 would have been enough, actually, to defeat Wagner’s attack.

The rest of the paper is organized as follows. Section 2 gives basics of Decorrelation Theory. We
dedicate Sections 3, 4, 5 and 6 to our main contributions.

2 Basics of Decorrelation Theory

In this paper, F denotes a random function (or equivalently a function set up with a random key)
from M1 to M2 and F ∗ denotes the ideal random function from M1 to M2, that is, a function drawn
uniformly at random among all |M2||M1| functions on the given sets. Similarly, C denotes a random
cipher (or equivalently, the encryption function set up with a random key) over M1 and C∗ denotes
the ideal random cipher over M1, that is, a permutation drawn uniformly at random among all |M1|!
permutations. We use the following standard notations: |S| denotes the cardinality of the set S; Md is
the set of all sequences of d tuples over the set M; GF(q) is the finite field with q elements; GF(q)[x] is
the set of polynomials defined over GF(q); E(X) denotes the expected value of the random variable X;
V (X) is the variance of the random variable X; gcd(p(x), q(x)) denotes the greatest common divisor of
p(x) and q(x); and “⊕” denotes addition modulo 2.

We consider the Luby-Rackoff model [15] in which an adversary A is unbounded in terms of compu-
tational power. It is bounded to d number of plaintext/ciphertext queries to an oracle Ω implementing
a random function (resp. a random cipher). The goal of the adversary A is to guess whether this func-
tion (resp. cipher) is drawn following the distribution of F (resp. C) or of F ∗ (resp. C∗). When queries
are chosen randomly and at once, such an adversary is exactly a non-adaptive d-limited distinguisher.
However, when queries are chosen depending on the answers to the previous queries, it is referred to as
an adaptive d-limited distinguisher. In both distinguishers, the measure of success of A is computed by
means of the advantage of the adversary.

Definition 1 Let F0 and F1 be two random functions. The advantage of an adversary A distinguishing
F0 from F1 is defined by

AdvA(F0, F1) =
∣∣Pr[A(F0) = 1]− Pr[A(F1) = 1]

∣∣.
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Another measure is the best advantage of the distinguisher which is formulated as

BestAdvζ(F0, F1) = max
A∈ζ

AdvA.

Here, the maximum is taken over adversaries in a class ζ. For instance, ζ can consist of all non-adaptive
or all adaptive d-limited distinguishers, denoted by ANA(d) and AA(d), respectively, between F0 and F1

depending on A being non-adaptive or adaptive.
Decorrelation Theory has a link with Linear and Differential Cryptanalyses (see Algorithms 1 and 2)

which are the essential cryptanalysis methods of both block ciphers and pseudorandom functions. Both
methods have iterative analysis of an instance of a block cipher and refer to the set of attacks called
iterated attacks. More explicitly, iterated attacks are defined as iterations of d-limited distinguishers.
When non-adaptive d-limited distinguishers are iterated, we obtain non-adaptive iterated distinguishers
of order d. When adaptive d-limited distinguishers are iterated, we get adaptive iterated distinguishers
of order d. A generic non-adaptive iterated distinguisher of order d is illustrated in Algorithm 3. Briefly,
a test T generates the binary output Ti of each iteration i, and then the distinguisher outputs his final
decision based on the acceptance set Acc and the tuple (T1, . . . , Tn). Linear and differential cryptanalyses
are the examples for non-adaptive iterated attacks of order 1 and 2, respectively. Their combinations
called differential-linear distinguishers, described in Algorithm 4, are non-adaptive iterated attacks of
order 2. In addition, the boomerang attack is an adaptive iterated attack of order 4 (with chosen plaintexts
and ciphertexts).

Algorithm 1 Linear Distinguisher
Input: an integer n, a set X, a set I, masks a and b
Oracle: an oracle Ω implementing a permutation c
1: for i = 1 to n do
2: pick x1 uniformly at random from X
3: set y1 = c(x1)
4: set Ti = a · x1 ⊕ b · y1
5: end for
6: if T1 + · · ·+ Tn ∈ I then
7: output 1
8: else
9: output 0

10: end if

Algorithm 2 Differential Distinguisher
Input: an integer n, a set X, differences α and β
Oracle: an oracle Ω implementing a permutation c
1: for i = 1 to n do
2: pick x1 uniformly at random over X
3: set x2 = x1 ⊕ α
4: set y1 = c(x1), y2 = c(x2)
5: set Ti = 1y1⊕y2=β
6: end for
7: if T1 + · · ·+ Tn 6= 0 then
8: output 1
9: else

10: output 0
11: end if

We now recall two matrix-norms which are used in Decorrelation Theory.

Definition 2 Let M ∈ R|M1|d×|M2|d be a matrix. Then, two matrix-norms are defined by

‖M‖∞ = max
x1,...,xd

∑
y1,...,yd

|M(x1,...,xd),(y1,...,yd)|

and
‖M‖A = max

x1

∑
y1

· · ·max
xd

∑
yd

|M(x1,...,xd),(y1,...,yd)|.
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Algorithm 3 A generic non-adaptive iterated distinguisher of order d
Input: an integer n, a set X, a distribution X on X, a test T , a set Acc
Oracle: an oracle Ω implementing a permutation c
1: for i = 1 to n do
2: pick x = (x1, . . . , xd) at random from a distribution X
3: set y = (c(x1), . . . , c(xd))
4: set Ti = 0 or 1 such that Ti = T (x, y)
5: end for
6: if (T1, . . . , Tn) ∈ Acc then
7: output 1
8: else
9: output 0

10: end if

Algorithm 4 Differential-Linear Distinguisher
Input: an integer n, a set X, a set I, masks a and b, differences α and β
Oracle: an oracle Ω implementing a permutation c
1: for i = 1 to n do
2: pick x1 uniformly at random over X
3: set x2 = x1 ⊕ α
4: set y1 = c(x1) and y2 = c(x2)
5: set Ti = b · y1 ⊕ b · y2
6: end for
7: if T1 + · · ·+ Tn ∈ I then
8: output 1
9: else

10: output 0
11: end if

The use of these matrix-norms depends on the type of attacks. The first norm which is known as
L∞-matrix-norm is used for non-adaptive distinguishers, while the second matrix-norm which is called
the adaptive matrix-norm or ‖ · ‖A-matrix-norm by Vaudenay [23], is for adaptive distinguishers. The
reasonings are obvious as the former matrix-norm maximizes the sum over all input tuples when they
are chosen at once, while the latter one maximizes the sum according to the inputs which are chosen
dependently on the previous inputs.

We now recall a fundamental notion of Decorrelation Theory, the d-wise distribution matrix of a
random function or a random permutation.

Definition 3 ([25]) Let F be a random function from M1 to M2. The d-wise distribution matrix [F ]d

of F is a |M1|d × |M2|d-matrix and is defined by

[F ]d(x1,...,xd),(y1,...,yd)
= Pr

F
[F (x1) = y1, . . . , F (xd) = yd],

where x = (x1, . . . , xd) ∈Md
1 and y = (y1, . . . , yd) ∈Md

2.

Intuitively, a distribution matrix of an arbitrary function F (resp. cipher C) helps to analyze the func-
tion and show how far it is from its ideal version F ∗ (resp. C∗). Mainly, the distribution of (F (x1), . . . , F (xd))
is corresponding to each row of the d-wise distribution matrix.

The distribution matrix of a random function lets us define the d-wise decorrelation or equivalently
the decorrelation of order d. Intuitively, the decorrelation of order d of a random function F is defined
as the distance D([F ]d, [F ∗]d) between its d-wise distribution matrix and the d-wise distribution matrix
of the perfect function F ∗. If the decorrelation distance is zero, that is D([F ]d, [F ∗]d) = 0, we call
F as the perfect d-decorrelated function. Intuitively, the distribution of both (F (x1), . . . , F (xd)) and
(F ∗(x1), . . . , F ∗(xd)) are equal. If the decorrelation distance is small enough, then we call this function
a d-decorrelated function. Note that we use a d-decorrelated function and a function decorrelated to
the order d, interchangeably in the paper. To generalize this, we consider D([F1]d, [F2]d) which is called
d-wise decorrelation distance between F1 and F2, given two random functions F1 and F2.

Next, the advantage of the best distinguisher is computed.
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Theorem 2 (Theorems 10 and 11 in [25]) Let F and F ∗ be a random function and the ideal
random function, respectively. The respective advantages of the best non-adaptive and adaptive d-limited
distinguishers, ANA(d) and AA(d), are

AdvANA(d)
(F, F ∗) =

1

2
‖[F ]d − [F ∗]d‖∞

and

AdvAA(d)
(F, F ∗) =

1

2
‖[F ]d − [F ∗]d‖A.

Furthermore, Luby and Rackoff prove the security of a 3-round Feistel scheme when the round func-
tions are perfect functions as follows.

Theorem 3 ([15]) Let F1, F2 and F3 be independent and uniformly distributed functions over a setM1.
Consider a 3-round Feistel cipher C = ψ(F1, F2, F3) on M2

1 as in Figure 1 and the perfect cipher C∗.
The advantage of any distinguisher A distinguishing between C and C∗ which is limited to d queries,
d > 0 is an integer, is

AdvA ≤ d2/
√
M,

where M = |M1|2.

Lastly, Theorem 1 provides a bound for the advantage of a distinguisher against random permutations.
We provide the following theorem for the case of random functions which proves a a tighter bound for
the advantage.

Theorem 4 Let F be a random function from M1 to M2, where d ≤ |M1|/2 and |M2| = N . Assume
that F is decorrelated to the order 2d by ‖[F ]2d − [F ∗]2d‖∞ ≤ ε, where F ∗ is the perfect function. We
consider a non-adaptive iterated distinguisher of order d between F and F ∗ with n iterations. We assume
that a set of d plaintexts is generated in each iteration in an independent way and following the same
distribution. Moreover, we define δ as the probability that two sets drawn with this distribution have a
nonempty intersection. Then, we bound the advantage of the adversary as

AdvANAI(d)
≤ 5

3

√(
2δ +

3ε

2

)
n2 + nε.

Proof This proof is exactly the same as the proof of Theorem 1 [25] except for the computation of
V (T (F ∗)) which results in a tighter bound for the distinguisher. Given F = f (resp. F ∗ = f), let T (f) be
the probability that test function T outputs 1 when (X, f(X)) is its input, i.e. T (f) = EX(T (X, f(X))),
where X is input to the oracle. Let p (resp. p∗) be the probability that the distinguisher outputs 1, i.e.
p = PrF [(T1(F ), . . . , Tn(F )) ∈ Acc], where Acc is the acceptance set and Ti(F ) (resp. Ti(F

∗)) is the
output of iteration i.

As Ti(f)’s are all independent once f is fixed and have the same expected value T (f), we get

p = EF

( ∑
(t1,...,tn)∈Acc

T (F )t1+···+tn(1− T (F ))n−(t1+···+tn)

)
.

Then, p can be rewritten as

p =

n∑
i=0

aiEF (T (F )i(1− T (F ))n−i)

for some integers ai such that 0 ≤ ai ≤
(
n
i

)
. Therefore, the advantage |p − p∗| is maximal when all ai’s

are either 0 or
(
n
i

)
depending on the distributions T (F ) and T (F ∗). This implies that the acceptance

set of the best distinguisher is of the form Acc = {(t1, . . . , tn)|
∑n
i=1 ti ∈ B} for some set B ⊆ {0, . . . , n}.

Therefore, we have p = EF (s(T (F ))), where s(x) =
∑
i∈B
(
n
i

)
xi(1− x)n−i.

Now, we compute the derivative of s as

s′(x) =
∑
i∈B

(
n

i

)
i− nx
x(1− x)

xi(1− x)n−i.
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Notice that, as the sum over all i, such that 0 ≤ i ≤ n, is the derivative of (x+ (1− x))n, the total sum
is zero.

Hence, we get

|s′(x)| ≤
∑

nx≤i≤n

(
n

i

)
i− nx
x(1− x)

xi(1− x)n−i ≤ n

x

∑
nx≤i≤n

(
n

i

)
xi(1− x)n−i,

as nx ≤ i ≤ n. Notice that when x ≥ 1/2, we have |s′(x)| ≤ 2n. Similarly, when x < 1/2, we have
|s′(x)| ≤ 2n. Thus, we obtain |s′(x)| ≤ 2n, for every x. So, according to the Mean Value Theorem, we
have

|s(T (F ))− s(T (F ∗))| ≤ 2n|T (F )− T (F ∗)|.

According to Theorem 2, we have |EF (T (F ))−EF∗(T (F ∗))| ≤ ε/2, |EF (T 2(F ))−EF∗(T 2(F ∗))| ≤ ε/2
and |V (T (F ))− V (T (F ∗))| ≤ 3ε/2. Then, the advantage of the distinguisher is

|p− p∗| = |E(T (F ))− E(T (F ∗))| ≤ E(|T (F )− T (F ∗)|).

By applying Tchebichev’s inequality for both T (F ) and T (F ∗) which is

Pr[|T (F )− E(T (F ))| > λ] ≤ V (T (F ))/λ2

for any λ > 0 (same for T (F ∗)), we get

|p− p∗| ≤ V (T (F ))

λ2
+
V (T (F ∗))

λ2
+ 2n

(
|E(T (F ))− E(T (F ∗))|+ 2λ

)
≤

2V (T (F ∗)) + 3
2ε

λ2
+ 2n

(ε
2

+ 2λ
)
.

We have

|p− p∗| ≤ 5
(

(2V (T (F ∗)) +
3ε

2

)
n2
) 1

3

+ nε, (1)

when λ =
(

2V (T (F∗))+ 3ε
2

n

) 1
3

. Up to this point, the proof was the same with the proof of Theorem 1.

However, the bound for V (T (F ∗)) is different from the bound for V (T (C∗)), where C∗ is the perfect
cipher. We get V (T (F ∗)) to be equal to∑

(x,y),(x′,y′)∈T

Pr[X = x] Pr[X = x′]
(

Pr
F∗

[(x, x′)
F∗−−→ (y, y′)]− Pr

F∗
[x

F∗−−→ y] Pr
F∗

[x′
F∗−−→ y′]

)
.

In order to bound this sum, we divide pairs of iterations (x, x′) into two groups such that the first
group has no common queries, i.e. ∀i, j xi 6= x′j , but the second one has. As a remark, we assume that
the adversary does not pick the same query in a single iteration, i.e. xi 6= xj , when i 6= j. As all xi’s are

distinct in x = (x1, . . . , xd), then [F ∗]d(x1,...,xd),(y1,...,yd)
=
∏d
i=1 Pr[F ∗(xi) = yi] = N−d. When inputs x

and x′ have no common queries, then

[F ∗]2d(x1,...,xd,x′1,...,x
′
d),(y1,...,yd,y

′
1,...,y

′
d)

=

d∏
i=1

Pr[F ∗(xi) = yi]

d∏
i=1

Pr[F ∗(x′i) = y′i] = N−2d.

Therefore, when input tuples x and x′ have no common queries, the sum will be 0. Otherwise, when the
plaintext tuples x and x′ have common queries with probability δ, then the sum over all these plaintext
tuples will be less than δ. Hence, we have V (T (F ∗)) ≤ δ.

When we substitute δ for V (T (F ∗)) in the inequality in Line (1), we get

|p− p∗| ≤ 5
3

√(
2δ +

3ε

2

)
n2 + nε.

ut

Two followings are useful for the rest of the paper.
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Definition 4 The trace Tr(β) of an element β ∈ GF(2k), is defined as

Tr(β) = β + β2 + · · ·+ β2k−1

.

Note that it is well known that the trace is linear and the trace of an element of GF(2k) is either 0 or 1.

Lemma 1 (Hoeffding’s bound [11]): Let X1, X2, . . . , Xn be independent random variables and 0 ≤
Xi ≤ 1, for i ∈ {1, . . . , n}. Define X̄ = 1

n

∑n
i=0Xi and let µ = E(X̄). Then, for ε, 0 ≤ ε ≤ 1 − µ, we

have
Pr[X̄ ≥ E(X̄) + ε] ≤ e−2nε

2

and Pr[X̄ ≤ E(X̄)− ε] ≤ e−2nε
2

.

In addition, two-sided Hoeffding’s bound is stated by

Pr[|X̄ − E(X̄)| ≥ ε] ≤ 2e−2nε
2

.

Definition 5 Let S be the sample space and E ⊆ S be an event. The indicator function of the event
E, denoted by 1E , is a random variable defined as

1E(s) =

{
1, if s ∈ E,
0, if s /∈ E.

The indicator function can shortly be denoted as 1E instead of 1E(s).
In the sequel, we concentrate on the solutions of two aforementioned open problems.

3 Addressing the Two Open Problems

We deal with two open problems in Decorrelation Theory. In [25], Vaudenay proposes Theorem 1 proving
that the decorrelation of order 2d is sufficient for a cipher in order to resist a non-adaptive iterated
attack of order d. We show here that the decorrelation of order 2d − 1 is not sufficient by providing
a counterexample. Secondly, the same theorem can be interpreted to imply that probability of having
common queries increases the bound of the attack. To see the effect of this probability, we provide another
counterexample showing that when this probability is high, the advantage of the distinguisher can be
high as well.

3.1 A 3-round Feistel Scheme

We create a three round Feistel scheme C to be used in the following two subsections. This cipher C
consists of three perfect κ-decorrelated functions F1, F2, and F3 on M1 = GF(q). Each Fi is defined by

Fi(x) = aiκ−1x
κ−1 + aiκ−2x

κ−2 + · · ·+ ai0

over a finite field GF(q), where (aiκ−1, a
i
κ−2, . . . , a

i
0) is distributed uniformly at random over GF(q)κ, for

i ∈ {1, 2, 3}. According to Theorem 3, we have ‖[C]κ−[C∗]κ‖A ≤ 2κ2/q. Notice that this theorem bounds
the advantage which is half of the decorrelation distance.

3.2 Decorrelation of Order 2d− 1 is NOT Sufficient

In this section, we put forward a counterexample on the 3-round Feistel cipher C defined in the previous
section, which is decorrelated to the order κ = 2d − 1. This implies that ‖[C]2d−1 − [C∗]2d−1‖A ≤
2(2d− 1)2/q due to Theorem 3. We provide a successful non-adaptive iterated distinguisher of order d
against C showing that the decorrelation of order 2d− 1 is not enough to resist a non-adaptive iterated
distinguisher of order d.

We first start with explaining the input distribution that the adversary uses. Let (x1, x2, . . . , xd) be
the plaintext tuple and (y1, y2, . . . , yd) be the ciphertext tuple such that C(xi) = yi, where 1 ≤ i ≤ d.
We will pick plaintexts with specific properties. Every plaintext xi can be written as xi = xLi ‖xRi , where
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Fig. 1 Our 3-round Feistel scheme indicating the structure of the distinguishers defined in subsections 3.2 and 3.3

xLi and xRi , both in GF(q), are left and right halves of xi. For each i, we let xRi = 0, i.e., xi = xLi ‖0.

Moreover, we choose a random c1 and plaintexts (xL1 , x
L
2 , . . . , x

L
d ) satisfying

∏d
i=1 x

L
i = c0 and∑

i1≤d

xLi1 = cd−1,
∑

i1<i2≤d

xLi1x
L
i2 = cd−2, . . . ,

∑
i1<···<id−1≤d

xLi1x
L
i2 · · ·x

L
id−1

= c1,

where all ci’s, except c1, are previously chosen constants and xLi ’s are pairwise distinct. The left half of
these inputs is chosen by Algorithm 5.

Elaborating Algorithm 5. Given d and c0, c2, . . . , cd−1 ∈ GF(q), this algorithm first constructs h(x), where
h(x) = xd − cd−1xd−1 + · · ·+ (−1)d−2c2x

2 + (−1)dc0. It picks a random c1 from GF(q) to construct g(x)
which is defined as g(x) = h(x) + (−1)d−1c1x. It checks if g(x) divides xq − x in order to be sure that
all roots are in GF(q). Afterwards, it confirms that all roots are distinct by verifying that g(x) and
its derivative g′(x) have no common divisors. Once these two conditions are satisfied, the algorithm
outputs the roots of the polynomial g and gets the desired plaintext tuple. The number of iterations
in the algorithm to get the desired plaintext tuple is approximately qd/

(
q
d

)
≤ d!, that is, one over the

probability that a random monic polynomial of degree d has d distinct roots in GF(q). To be more
precise, since there are q possible irreducible factors of degree 1 in GF(q)[x], we compute their d possible
combinations in

(
q
d

)
ways to construct polynomials of degree d and we divide it by the number of total

monic polynomials of degree d which is qd.

Algorithm 5 Generating the left half of the plaintext tuples
1: Input: d,c0, c2, . . . , cd−1, q
2: Output: (x1, . . . , xd)

3: construct h(x) = xd − cd−1x
d−1 + · · ·+ (−1)d−2c2x2 + (−1)dc0

4: repeat
5: pick c1 ∈ GF(q) at random and construct g(x) = h(x) + (−1)d−1c1x
6: until xq ≡ x mod g(x) and gcd(g(x), g′(x)) = 1
7: find the roots (x1, . . . , xd) of g(x) by using a factorization algorithm for polynomials
8: return (x1, . . . , xd)

Consider the encryption of each round when xi’s are satisfying the above properties. After the first
round, we have 0‖(xLi +F1(0)). Then, the output of the second round encryption is (xLi +F1(0))‖F2(xLi +
F1(0)). Finally, the corresponding ciphertext yi will be yi = yLi ‖yRi = (F3(F2(xLi + F1(0))) + xLi +
F1(0))‖F2(xLi + F1(0)). However, we will only be interested in the right part of the ciphertext, i.e. yRi ,
which can be seen as the output of a random polynomial function of degree at most 2d−2. More explicitly,
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as yRi = F2(xLi +F1(0)), we can write yRi as a function of xLi such that F (xLi ) = F2(xLi + a10). Obviously,
each coefficient of the polynomial F is a function of coefficients of F2 and the constant coefficient of F1,
namely fi(a

1
0, a

2
2d−2, . . . , a

2
0). Because the coefficients of F depend on the coefficients of random functions

F1 and F2, F is also a random function.
As we use the input distribution defined above, we can get some fixed bits by interpolating the

function F , the right part of the output of the cipher. In more detail, in every iteration we interpolate a
polynomial r, which will appear in the equation in Line (2). We expect that for the perfect function F ∗

the constant coefficient of the polynomial r would be random, but for F it would be fixed. We prove this
in Lemma 2. After formally writing this argument, by defining the test function T and the acceptance
set Acc, we can distinguish the cipher from its ideal counterpart with only two iterations.

The distinguisher has d plaintext-ciphertext pairs in each iteration and F is indeed a polynomial.
Moreover, we know d points on F and we then use the underdetermined interpolation technique to
determine F . We write F such that F (x) = a2d−2x

2d−2 + a2d−3x
2d−3 + · · ·+ a0 over GF(q), then we can

write F as

F (x) = r(x) + s(x)g(x). (2)

Here, r is a unique polynomial of degree at most d−1 which interpolates d given points, s is a polynomial
of degree at most d − 2 over GF(q) and g is a polynomial of degree d with the xLi ’s as its roots g(x) =
(x− xL1 ) · · · (x− xLd ). Let r(x) = rd−1x

d−1 + · · ·+ r0, g(x) = xd− cd−1xd−1 + · · ·+ (−1)d−1c1 + (−1)dc0,
and s(x) = sd−2x

d−2 + · · · + s0, where ri, cj , sk ∈ GF(q), 0 ≤ i, j ≤ d − 1, and 0 ≤ k ≤ d − 2. We note
that g(x) can be written as g(x) = h(x) + (−1)d−1c1x, where h is a fixed polynomial of degree d with
zero coefficient for the term x.

The aim is to get some fixed bits related to the function F in each iteration to have a distinguisher. The
following lemma shows that, when the input is picked according to Algorithm 5, the constant coefficient
r0 of polynomial r is fixed in each iteration.

Lemma 2 Let F be the polynomial of degree at most 2d−2 over GF(q) as defined above. Let xL1 , . . . , x
L
d ∈

GF(q) be the left half of the plaintexts generated by Algorithm 5 and F (xLi ) = yRi , 0 ≤ i ≤ d. Then, the
constant coefficient r0 of the polynomial r, which is obtained by the Lagrange interpolation of the given
d points, is fixed in each iteration.

Proof We write g(x) = h(x) + (−1)d−1c1x for (xL1 , . . . , x
L
d ) and for some c1 ∈ GF(q), where h is a

fixed polynomial. Therefore, F (x) = r(x) + s(x)g(x) = r(x) + s(x)(h(x) + (−1)d−1c1x) as in Equation
(2). For another input tuple (x′L1 , . . . , x

′L
d ) and some c′1 ∈ GF(q), we have F (x) = r′(x) + s′(x)g′(x) =

r′(x) + s′(x)(h(x) + (−1)d−1c′1x). Hence, we obtain

(r(x) + s(x)(h(x) + (−1)d−1c1x))− (r′(x) + s′(x)(h(x) + (−1)d−1c′1x))

= r(x)− r′(x) + ((−1)d−1(c1s(x)− c′1s′(x)))x︸ ︷︷ ︸
Polynomial 1

+ (s(x)− s′(x))h(x) = 0︸ ︷︷ ︸
Polynomial 2

⇒ s(x) = s′(x).

Polynomial 1 has degree at most d − 1 and Polynomial 2 has at least degree d (the degree of h),
unless s(x) = s′(x). Therefore, in order to have zero on the right side of the equation, s(x) − s′(x) has
to be zero. This shows that the polynomial s is a fixed polynomial, i.e. independent from the plaintext
tuple that is queried. Therefore, we can write F as F (x) = r(x) + s(x)(h(x) + (−1)d−1c1x), for fixed
polynomials s and h and for some c1 ∈ GF(q). Hence, when x = 0, we have F (0) = r(0) + s(0)h(0) which
implies that r0 = a0 − s0h0 is always fixed. ut

We can now deduce that r0 is always fixed and independent from the plaintext tuples due to the
carefully chosen plaintext tuples.

Now, we use Lemma 2 to construct a distinguisher between C and C∗. We denote the derived value
of r0 as a function f((x1, . . . , xd), (y1, . . . , yd)). Let D be a subset of distinguished values of GF(q) with
a given cardinality q/µ, where µ > 1 is a positive divisor of q. Define the test function as

T ((x1, . . . , xd), (y1, . . . , yd)) =

{
1, if f((x1, . . . , xd), (y1, . . . , yd)) ∈ D,
0, otherwise,
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and the acceptance set as

Acc[t1, . . . , tn] =

{
1, if (t1, . . . , tn) 6= (0, . . . , 0),

0, otherwise.

All iterations will reply the same answer for the function F and a random answer for F ∗. Let p (resp.
p∗) be the probability that the distinguisher outputs 1 when it is fed with F (resp. F ∗). Hence, according
to the acceptance set defined above, we get p = 1

µ and p∗ = 1 − (1 − 1
µ )n. If we consider n = 2, two

iterations only, then the advantage of the distinguisher will be |p− p∗| = | 1µ − (1− (1− 1
µ )2)| = 1

µ (1− 1
µ )

which is high. By this way, we can distinguish the cipher C from the perfect cipher C∗ by distinguishing
the function F , which defines the right part of the output of the cipher C, from the perfect function F ∗.

Illustration of the attack for d = 2. We consider the Feistel scheme for κ = 3 over GF(pk) which makes
the write half of the output yR a random polynomial F (x) = F2(x + F1(0)) of degree at most 2.
The input distribution is chosen as (x1, x2) = (xL1 ‖0, xL2 ‖0), xL1 + xL2 = 0 and xL1 6= xL2 . If we write
F as F (x) = a2x

2 + a1x + a0, then we can recover a1 as a1 = (yR1 − yR2 )(xL1 − xL2 )−1 by solving
a2(xL1 )2 + a1x

L
1 + a0 = yR1 and a2(xL2 )2 + a1x

L
2 + a0 = yR2 . The adversary will notice that a1 is fixed for

F in every iteration while it is random for a truly random cipher F ∗. For this attack two iterations are
enough to carry out the attack.

3.3 Assuming a Low δ is NECESSARY

Theorem 1 shows that if a cipher is decorrelated to the order 2d, then it resists to an iterated attack of
order d. Moreover, it is speculated that a high probability δ of having a common query does not provide
any advantage to the adversary. However, we give a counterintuitive example showing that there is an
iterated distinguisher of order 1 on a 2d-decorrelated cipher when the probability of having at least one
query in common in any two iterations is high. This shows that introducing this probability δ in Theorem
1 is necessary.

In our distinguisher, we use C, depicted in Figure 1, for κ = 2d and q = 2k which has the property
that ‖[C]2d − [C∗]2d‖A ≤ 8d2/2k due to Theorem 3. We are going to prove that C is not resisting an
iterated attack of order 1 when the set of plaintexts of adversary’s choice is small. Let S be a set of
plaintexts S = {x1, x2, . . . , x2d+2}, where xi = xLi ‖xRi , xL and xR are the left and the right halves of

xi, respectively. These plaintexts satisfy xRi = 0 and
∑2d+2
i=1 (xLi )

j
= 0, 1 ≤ j ≤ 2d − 1 and all xLi ’s are

pairwise distinct elements of GF(2k). How to generate the left part of the plaintexts in S is provided in
Algorithm 6. In each iteration, we pick one element of S at random. As the adversary’s choice of input
set has 2d+ 2 elements, we have δ = 1/(2d+ 2).

Analyzing Algorithm 6. This algorithm finds p(x) = x2d+2 + ax2 + bx+ c with distinct roots in GF(2k),

where a, b, c ∈ GF(2k). Note that p(x) has roots satisfying
∑2d+2
i=1 (xLi )

j
= 0, 1 ≤ j ≤ 2d−1. This is proved

in Lemma 3 when n = 2d + 2. The expected number of iterations in the algorithm can be computed

heuristically as 2k(2d+2)/
(

2k

2d+2

)
≤ (2d + 2)!, that is, one over the probability that a random monic

polynomial of degree 2d + 2 has 2d + 2 distinct roots in GF(2k). As there are 2k possible irreducible

factors of degree 1 in GF(2k)[x], we compute their 2d + 2 possible combinations
(

2k

2d+2

)
to construct

polynomials of degree 2d+ 2 and we divide it by the total number of monic polynomials of degree 2d+ 2
which is 2k(2d+2).

Lemma 3 Let f be a polynomial of the form f(x) = xn + an−1x
n−1 + an−2x

n−2 + · · ·+ a2x
2 + a1x+ a0

over GF(2k) and x1, x2, . . . , xn be its roots. If an−1 = an−2 = · · · = a3 = 0, then its roots satisfy
sk =

∑n
i=1 x

j
i = 0, where 1 ≤ j ≤ n− 3 and n ≥ 4.

Proof First, we recall the Newton formulas. Let f be a polynomial of the form f(x) = xn + an−1x
n−1 +

an−2x
n−2 + · · ·+a2x

2 +a1x+a0 with the roots x1, x2, . . . , xn so that f(x) = (x−x1)(x−x2) · · · (x−xn)
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over a ring. Then, we define the elementary symmetric functions of the roots as∑
1≤i≤n

xi = −an−1,∑
1≤i<j≤n

xixj = an−2,∑
1≤i<j<k≤n

xixjxk = −an−3,

. . . ,
n∏
i=1

xi = (−1)na0.

In addition, the kth power sums of the roots are defined as sk =
∑

1≤i≤n x
k
i . Then, Newton formulas

give recursion relations between ai’s and si’s as

s1 + an−1 = 0,

s2 + an−1s1 + 2an−2 = 0,

. . . ,

sn + an−1sn−1 + an−2sn−2 + · · ·+ na0 = 0,

sn+1 + an−1sn−1 + an−2sn−2 + · · ·+ s1a0 = 0.

Note that Newton formulas are valid over finite fields. If we assume that an−1 = an−2 = · · · = a3 = 0,
then according to the Newton formulas given above we will show that sk = 0 for 1 ≤ k ≤ n − 3. As
s1 + a1 = 0 and a1 = 0, we have s1 = 0. By induction, assume that s1 = s2 = · · · = sk−1 = 0 and
an−1 = an−2 = · · · = an−k = 0, then we have sk = −(an−1sk−1+an−2sk−2+ · · ·+kan−k) = 0. Therefore,
the polynomial f(x) = xn + a2x

2 + a1x+ a0 satisfies sk =
∑n
i=1 x

j
i = 0, where 1 ≤ j ≤ n− 3 and n ≥ 4.

ut

Algorithm 6 Generating the left half of the plaintexts in S
1: Input: k, d
2: Output: (x1, . . . , x2d+2)
3: repeat
4: pick a, b, c ∈ GF(2k) at random and construct p(x) = x2d+2 + ax2 + bx+ c

5: until x2
k ≡ x mod p(x) and gcd(p(x), p′(x)) = 1

6: find the roots (x1, . . . , x2d+2) of p(x) by using a factorization algorithm for polynomials
7: return (x1, . . . , x2d+2)

Like in Section 3.2, in order to distinguish this cipher C from the perfect cipher C∗, we distinguish the
right half of the output of the cipher which is itself a random function of the form F (x) = a2d−1x

2d−1 +
a2d−2x

2d−2 + · · ·+ a0 over GF(q).

To explain how the distinguisher works briefly, when we consider that the plaintext space has the
special form mentioned before, the polynomial F can be distinguished by using the trace (see Definition
4). This is because, by the following Lemma, the sum of the trace of all elements of S behaves differently
when F is considered than when F ∗ is considered. Now, the following lemma proves this distinguishing
property of F .

Lemma 4 Let F be a random function and S be the input set defined as above. For xi = xLi ‖0 ∈ S,
1 ≤ i ≤ 2d+ 2, we have

2d+2∑
i=1

Tr(F (xLi )) = 0.

12



Proof As
∑2d+2
i=1 (xLi )j = 0, 1 ≤ j ≤ 2d− 1, we have

2d+2∑
i=1

Tr(F (xLi )) =

2d+2∑
i=1

Tr(a2d−1(xLi )
2d−1

+ a2d−2(xLi )
2d−2

+ · · ·+ a0) =

Tr
(
a2d−1

2d+2∑
i=1

(xLi )
2d−1)

+ Tr
(
a2d−2

2d+2∑
i=1

(xLi )
2d−2)

+ · · ·+ Tr
(
a0

2d+2∑
i=1

(xLi )
0
)
.

Which is equal to 0 due the linearity of trace, the characteristic of this field being two, and Tr(0) = 0.
ut

Lemma 4 implies that there is an even number of F (xLi )’s which satisfy the property that Tr(F (xLi )) = 1

as
∑2d+2
i=1 Tr(F (xLi )) = 0 and the characteristic of this field is zero.

Now, we explain how the iterated distinguisher of order 1 with n iterations works, where the input is
distributed independently and identically over the set S. We use the property of the polynomial function
F which is stated in Lemma 4 in a way that in each iteration, we pick a plaintext x from S at random
and compute the trace of F (xL), i.e. t = Tr(F (xL)) being F (xL) = yR. Then, we compute the average
T̄ = 1

n (t1 + · · · + tn), where ti is the output of iteration i. We decide whether the oracle implements F
(equivalently C) or F ∗ (equivalently C∗) by simply checking that the average value T̄ is in the specified
set K which is determined according to the expected values of both T̄ and T̄ ∗ given in the following
lemma.

Lemma 5 Let S have the aforementioned property. Then, depending on S, the expected value of T̄ takes
any value from the set S1 = {2m/(2d+ 2)| 0 ≤ m ≤ d+ 1} , and that of T̄ ∗ takes any value from the set
S2 = {m/(2d+ 2)|0 ≤ m ≤ 2d+ 2} .

Proof Assume that there are 2m number of xi’s in S such that F (xLi )’s have Tr(F (xLi )) = 1 (from Lemma
4). Then, the number of xi’s satisfying Tr(F (xLi )) = 1 in n iterations is expected to be n(2m)/(2d+ 2),
where 0 ≤ m ≤ d+ 1. Therefore, the expected value of T̄ will be 2m/(2d+ 2), where 0 ≤ m ≤ d+ 1. In
a similar way, we can find the expected value of E(T̄ ∗) for the perfect function F ∗. ut

Now, using Lemma 5, we define the acceptance set as

Acc[t1, . . . , tn] =

{
1, if T̄ ∈ K =

⋃d+1
m=0

(
2m

2d+2 − ε,
2m

2d+2 + ε
)
,

0, otherwise.

Typically, ε = 1/(4d+ 4). Let p (resp. p∗) be the probability that the distinguisher outputs 1 when it is
fed with F (resp. F ∗). The following lemma states the bounds for both p and p∗.

Lemma 6 The probabilities of the distinguisher outputs 1 when C is considered and C∗ is considered
respectively are

p ≥ 1− 2e−2nε
2

and

p∗ ≤ 1

2
+ e−2nε

2

.

Proof For the function F , according to the acceptance set defined previously, p is expressed by

p =
∑
x∈S1

Pr[E(T̄ ) = x] Pr[T̄ ∈ K|E(T̄ ) = x].

As Pr[T̄ ∈ K|E(T̄ ) = x] ≥ 1 − 2e−2nε
2

by Hoeffding’s bound from Lemma 1, we have p ≥ 1 − 2e−2nε
2

.
Similarly, p∗ is computed as

p∗ =
∑
x∈S2

Pr[E(T̄ ∗) = x] Pr[T̄ ∗ ∈ K|E(T̄ ∗) = x].

The computation of p∗ is not straightforward; hence, we first compute the probability that each expected
value of T̄ ∗ from S2 occurs with probability Pr[E(T̄ ∗) = x] =

(
2d+2

x(2d+2)

)
2−(2d+2). In detail, we are picking
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x(2d+2) places for 1’s among 2d+2 possible places and dividing the total number of possible choices which
is 22d+2. Furthermore, the probabilities Pr[T̄ ∗ ∈ K|E(T̄ ∗) = x] are different according to the expected
value of different T̄ ∗. When E(T̄ ∗) = 2m/(2d+2) for 0 ≤ m ≤ d+1, we have Pr[T̄ ∗ ∈ K|E(T̄ ∗) = x] ≤ 1.

Similarly, when E(T̄ ∗) = (2m′ + 1)/(2d + 2), 0 ≤ m′ ≤ d, we get Pr[T̄ ∗ ∈ K|E(T̄ ∗) = x] ≤ 2e−2nε
2

by
Hoeffding’s bound. Then, p∗ can be computed as

p∗ =
∑

x∈{2m/(2d+2)|0≤m≤d+1}

Pr[E(T̄ ∗) = x] Pr[T̄ ∗ ∈ K|E(T̄ ∗) = x]

+
∑

x∈{(2m′+1)/(2d+2)|0≤m′≤d}

Pr[E(T̄ ∗) = x] Pr[T̄ ∗ ∈ K|E(T̄ ∗) = x]

≤
∑

x∈{2m/(2d+2)|0≤m≤d+1}

(
2d+ 2

x(2d+ 2)

)
2−(2d+2)

+
∑

x∈{(2m′+1)/(2d+2)|0≤m′≤d}

(
2d+ 2

x(2d+ 2)

)
2−(2d+2)2e−2nε

2

.

Note that the sum of even and odd indices of binomial coefficients are
∑
i≥0
(
n
2i

)
= 2n−1 and∑

i≥0
(
n

2i+1

)
= 2n−1, respectively. Hence, we have∑

x∈{2m/(2d+2)|0≤m≤d+1}

(
2d+ 2

x(2d+ 2)

)
2−(2d+2) =

1

2
.

Then, we get ∑
x∈{(2m′+1)/(2d+2)|0≤m′≤d}

(
2d+ 2

x(2d+ 2)

)
2−(2d+2)2e−2nε

2

≤ 1

2
2e−2nε

2

= e−2nε
2

.

Therefore, we get p∗ ≤ 1
2 + e−2nε

2

. ut

Finally, the advantage of the distinguisher is

|p− p∗| ≥
∣∣∣(1− 2e−2nε

2)
−
(1

2
+ e−2nε

2
)∣∣∣ =

∣∣∣1
2
− 3e−2nε

2
∣∣∣. (3)

When the distinguisher has a large number of iterations, we have |p−p∗| ≈ 1/2 which is quite high. This
way we manage to distinguish the cipher C from the ideal random cipher C∗. When the distinguisher
has a large number of iterations, we have |p − p∗| ≈ 1/2 which is quite high. This way, we manage
to distinguish the cipher C from the perfect cipher C∗. Hence, in specific situations, having common
queries can increase the advantage. Essentially, if the images of 2d + 2 points sum to zero, by taking
ε = 1/(4d+ 4) and n ≈ Ω(d2), we obtain an efficient iterated distinguisher of order 1.

As a final remark, in Decorrelation Theory, Vaudenay considers block ciphers in the context of
deterministic symmetric-key encryption. Therefore, for some input distribution, the probability δ that
two iterations have at least one query in common can be high. However, if we consider probabilistic
symmetric-key encryption, then δ will always be small. This is because, in this scheme, the oracle picks
the random coins, and even if the same plaintext is picked by the adversary, the random coins picked by
the oracle for two plaintexts would be different which cause two different inputs to the encryption.

Illustration of the attack for d = 1. We consider the Feistel scheme for κ = 2 over GF(2k). Hence, the
write half of the output yR becomes a random polynomial F (x) = F2(x + F1(0)) of degree at most 1.
The attacker picks the set of plaintexts S = {x1, x2, x3, x4} in a way that xi’s are pairwise distinct,
xL1 + xL2 + xL3 + xL4 = 0 and xi = xLi ‖0, 1 ≤ i ≤ 4. In each iteration, a chosen plaintext x is taken
from S, hence, δ = 1/4. The adversary computes ti = Trace(yRi ) in each iteration and then calculate the
experimental average T̄ . Since there are even number of F (xLi )’s for F such that Trace(F (xLi )) = 1, the
expected value of T̄ of F is concentrated around the values in {0, 2/4, 4/4} while the expected value of
T̄ ∗ of F ∗ is concentrated around the values in {0, 1/4, 2/4, 3/4, 4/4}. According to the advantage of the
attack given in Line 3, the attack is feasible with 1000 iterations.
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4 Resistance Against Adaptive Iterated Distinguishers

As mentioned before, we explore the maximum success of the adaptive iterated distinguishers.

4.1 Adaptive Plaintext-Ciphertext Iterated Distinguishers of Order d

We recall two generic distinguishers, namely an adaptive plaintext-ciphertext d-limited distinguisher (see
Algorithm 7) and an adaptive plaintext-ciphertext iterated distinguisher of order d (see Algorithm 8).
Both distinguishers are adaptive in a way that the adversary adaptively asks for both encryption and
decryption of the queries. Herein we formalize these distinguishers.

We first define a compact function G to be distinguished. The goal of defining this function is that the
input to the oracle is able to be specified being either encrypted or decrypted (as the adversary makes
either the plaintext queries or the ciphertext queries in a specific order depending on his type of attack).

Let G be the set of functions G such that G : M× {0, 1} → M satisfying G(G(x, 0), 1) = x and
G(G(x, 1), 0) = x, for all x. We denote G0(x) = G(x, 0) and G1(x) = G(x, 1) and point out G−11 = G0

and G−10 = G1. In what follows, G denotes a random element of G and G∗ is a uniformly distributed
element of G.

Algorithm 7 A generic adaptive plaintext-ciphertext d-limited distinguisher

Input: a function F , a test T , a distribution R on {0, 1}∗
Oracle: an oracle Ω implementing either an instance of G or an instance of G∗

1: pick r ∈ {0, 1}∗ at random from R
2: set u1 = (a1, b1)← F(·; r)
3: set v1 = Ω(u1)
4: set u2 = (a2, b2)← F(v1; r)
5: set v2 = Ω(u2)
6: . . .
7: set ud = (ad, bd)← F(v1, . . . , vd−1; r)
8: set vd = Ω(ud)
9: output T (v1, . . . , vd; r)

An adaptive d-limited distinguisher. The adversary AA(d), detailed in Algorithm 7, has access to an
oracle Ω which implements either an instance of G or an instance of G∗, such that functions G0 and G1

perform encryption and decryption, respectively. He picks a random coin r from {0, 1}∗ according to a
given distribution R and queries a function F which is fed with r and the output of the previous queries
(v1, v2, . . . , vi−1), where vk = Ω(uk) for all k ∈ {1, 2, . . . , i− 1}, and 1 ≤ i ≤ d. He then receives a new
query ui. He sends this input ui to the oracle to receive the output vi, where –as explained– vi = Ω(ui).
Finally, using a test T , he outputs a decision bit “1” if he guesses that Ω implements an instance of the
random function G, or “0” if he guesses that Ω implements an instance of the perfect function G∗.

Algorithm 8 A generic adaptive plaintext-ciphertext iterated distinguisher of order d

Input: an integer n, a function F , a test T , a set Acc, a distribution R on {0, 1}∗
Oracle: an oracle Ω implementing a function G or G∗

1: for k = 1 to n do
2: set Tk (with independent coins) ← output of Distinguisher in Algorithm 7
3: end for
4: output 1Acc(T1, . . . , Tn)

An adaptive iterated distinguisher of order d. The iterated distinguisher given in Algorithm 8 is simply
the iteration of the d-limited distinguisher (see Algorithm 5) in a way that the adversary AAI(d) repeats
the distinguisher n times, then he checks whether the output of n iterations are accepted or not with
respect to a set Acc. This gives his final decision.
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Algorithm 9 Boomerang Distinguisher
Input: an integer n, a set X, differences ∆ and ∇
Oracle: an oracle Ω implementing a permutation c
1: for k = 1 to n do
2: pick x1 uniformly at random over X
3: set x2 = x1 ⊕∆
4: set y1 = c(x1), y2 = c(x2)
5: set y3 = y1 ⊕∇, y4 = y2 ⊕∇
6: set x3 = c−1(y3), x4 = c−1(y4)
7: set Tk = 1x3⊕x4=∆
8: end for
9: if T1 + · · ·+ Tn 6= 0 then

10: output 1
11: else
12: output 0
13: end if

The boomerang attack [26] defined in Algorithm 9 is an example for an adaptive plaintext-ciphertext
iterated distinguisher of order d (see Algorithm 8) for the case d = 4. The adversary queries two (chosen)
plaintexts and receives their corresponding ciphertexts, he then constructs two ciphertexts depending on
the previous ciphertexts and asks for their decryption. The adaptively chosen queries to the oracle in each
iteration of the boomerang attack [26] can be written as (u1, u2, u3, u4) = ((x1, 0), (x1 ⊕∆, 0), (c(x1) ⊕
∇, 1), (c(x1⊕∆)⊕∇, 1)), where x1 is selected uniformly at random over the set X, and ∆ and ∇ denote
non-zero differences.

4.2 Advantage of Adaptive Plaintext-Ciphertext Iterated Distinguishers of Order d

Vaudenay [25] found a bound for the advantage of non-adaptive iterated distinguishers of order d, which is
not applicable to the adaptive adversaries. We extend his result and provide a bound for the advantage
of adaptive plaintext-ciphertext iterated distinguishers of order d. Strictly speaking, we compute the
maximum success of the adversary who is making d adaptive queries to the oracle in each iteration to
distinguish a 2d-decorrelated random cipher upon using the ‖ · ‖A norm.

Theorem 5 Let G ∈ G be a random function from M× {0, 1} to M such that ||[G]2d − [G∗]2d||A ≤ ε,
for some given integer d ≤ M/2, where G∗ is the perfect function and |M| = M . Let us consider an
adaptive iterated distinguisher of order d AAI(d) which is trying to distinguish G from G∗ by performing
n iterations (see Algorithm 6). Then, the advantage AdvAAI(d)

of AAI(d) is

AdvAAI(d)
≤ 5

3

√(
2θ + e8d2/M +

2d2

M
+

3ε

2
− 1
)
n2 + nε,

where θ is the probability that any two different iterations have at least one query in common.

Proof Let one iteration consist of the input queries u = (u1, u2, . . . , ud) and the output queries v =
(v1, v2, . . . , vd), where ui = (ai, bi) and vi = Ω(ui), for 1 ≤ i ≤ d.

We first make two conventional assumptions about the adaptive adversary.

Assumption 1: Inner-collisions in input queries, i.e. ui = uj , are not allowed, as calling the same query
twice in the same iteration will not give any advantage to the adversary.

Assumption 2: Let (ui = (ai, bi), vi) and (uj = (aj , bj), vj) be two queries in the same iteration. Cross
inner-collisions are not allowed, that is, we never have ai = vj or aj = vi when bi 6= bj , as getting
the same information will not give any advantage to the adversary.

Notice that these assumptions do not hold between different iterations.
We begin similarly to the proof of Theorem 1 provided in [25]. We first define T (g) to be the probability

that the test function T outputs 1 when G = g (resp. G∗ = g), i.e.

T (g) = Er(T (v1, . . . , vd; r)|G = g).
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We let p (resp. p∗) be the probability of the distinguisher outputting 1, let Acc be the acceptance set,
and Tk(G) (resp. Tk(G∗)) be the output of iteration k using coins rk’s. Then, we have

p = PrG,r1,...,rn [(T1(G), . . . , Tn(G)) ∈ Acc].

Notice that all Tk(g)’s are pairwise independent once g is fixed and that Erk(Tk(g)) = T (g). Hence, we
obtain

p = EG

( ∑
(t1,...,tn)∈Acc

T (G)t1+···+tn(1− T (G))n−(t1+···+tn)

)
.

Then, p can be rewritten as

p =

n∑
k=0

akEG(T (G)k(1− T (G))n−k),

for some integers ak such that 0 ≤ ak ≤
(
n
k

)
. Similarly, we have the same argument for p∗, i.e.

p∗ =

n∑
k=0

akEG∗(T (G∗)k(1− T (G∗))n−k).

The advantage of the distinguisher |p − p∗| is maximal, when all ak’s are either 0 or
(
n
k

)
depending

on the distributions T (G) and T (G∗). Hence, we assume that Acc of the best distinguisher is of the form

Acc =

{
(t1, . . . , tn)

∣∣∣ n∑
k=1

tk ∈ B

}
,

for some set B ⊆ {0, . . . , n}. Thus, we rewrite p = EG(s(T (G))), where s(x) =
∑
k∈B

(
n
k

)
xk(1− x)n−k.

Now, consider the derivative of s which can be written as

s′(x) =
∑
k∈B

(
n

k

)
k − nx
x(1− x)

xk(1− x)n−k.

Notice that as the sum over all k, such that 0 ≤ k ≤ n, is the derivative of (x + (1 − x))n, then the
total sum is zero. Hence, we obtain

|s′(x)| ≤
∑

nx≤k≤n

(
n

k

)
k − nx
x(1− x)

xk(1− x)n−k ≤ n

x

∑
nx≤k≤n

(
n

k

)
xk(1− x)n−k,

because nx ≤ k ≤ n. We note that when x ≥ 1/2, we have |s′(x)| ≤ 2n. Similarly, when x < 1/2, we
have |s′(x)| ≤ 2n. Hence, we get |s′(x)| ≤ 2n, for every x. So, according to the Mean Value Theorem, we
have

|s(T (G))− s(T (G∗))| ≤ 2n|T (G)− T (G∗)|. (4)

Furthermore, Theorem 2 gives the exact advantage for the best adaptive d-limited distinguisher.
Hence, |EG(T (G))− EG∗(T (G∗))| ≤ ε/2 is obtained.

We now define a new random variable T 2(G) which is the output of another test with 2d entries, that
is,

T (v1, . . . , vd; r)× T (v′1, . . . , v
′
d; r
′).

Thanks to Theorem 2, we have |EG(T 2(G)) − EG∗(T 2(G∗))| ≤ ε/2. Hence, we get |V (T (G)) −
V (T (G∗))| ≤ 3ε/2 which is obtained by |EG(T (G))−EG∗(T (G∗))| ≤ ε/2 and |EG(T 2(G))−EG∗(T 2(G∗))| ≤
ε/2. More precisely, we have

|V (T (G))− V (T (G∗))| = |EG(T 2(G))− E2
G(T (G))− EG∗(T 2(G∗)) + E2

G∗(T (G∗))|
≤ |EG(T 2(G))− EG∗(T 2(G∗))|+ |E2

G(T (G))− E2
G∗(T (G∗))|

≤ 3ε

2
. (5)

To obtain the result in Line (5), we use |EG(T (G)) + EG∗(T (G∗))| ≤ 2, as 0 ≤ T (G), T (G∗) ≤ 1.
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Afterwards, the advantage of the distinguisher is

|p− p∗| = |EG(s(T (G)))− EG∗(s(T (G∗)))| ≤ EG,G∗(|s(T (G))− s(T (G∗))|).

By applying Tchebichev’s inequality for both T (G) and T (G∗), i.e.

Pr[|T (G)− EG(T (G))| > λ] ≤ V (T (G))/λ2 and Pr[|T (G∗)− EG∗(T (G∗))| > λ] ≤ V (T (G∗))/λ2

for any λ > 0, we get

|p− p∗| ≤ V (T (G))

λ2
+
V (T (G∗))

λ2
+ 2n

(
|E(T (G))− E(T (G∗))|+ 2λ

)
(6)

≤
2V (T (G∗)) + 3

2ε

λ2
+ 2n

(ε
2

+ 2λ
)

(7)

Note that s maps the elements of [0, 1] to [0, 1], Line (6) is due to Inequality (4). We have

|p− p∗| ≤ 5
3

√(
2V (T (G∗)) +

3ε

2

)
n2 + nε, (8)

when λ = 3
√

(2V (T (G∗)) + (3ε/2))/n.

So far, everything works similarly to [25]. However, the rest is different as the function implemented
in the oracle has new properties. For further details of the proof up to now, refer to [25]. Now, it is left
to bound V (T (G∗)).

Bounding V (T (G∗)). We now bound V (T (G∗)) by expanding it as

V (T (G∗)) =
∑
S

Pr
R

[r] Pr
R

[r′]
(

Pr
G∗

[
(u, u′)

G∗−−→ (v, v′)
]
− Pr
G∗

[u
G∗−−→ v] Pr

G∗
[u′

G∗−−→ v′]
)
, (9)

where S = {(v, r), (v′, r′) ∈ T } and u (resp. u′) is defined by both r and v (resp. r′ and v′). For the sake
of simplicity, we denote inside the sum in Line (9) as P .

We first divide the expression in Line (9) into two disjoint sums depending on whether or not u and
u′ (from two different iterations) are colliding, i.e. if there exist i and j such that ui = u′j with u and u′

defined from (v, r) and (v′, r′), respectively. In detail, we have S1 =
{

(v, r), (v′, r′) ∈ T | ∃i, j s.t. ui = u′j
}

and S2 =
{

(v, r), (v′, r′) ∈ T | ∀i, j s.t. ui 6= u′j
}

such that S = S1 ∪ S2. Thus, we write

∑
S

P =
∑
S1

P +
∑
S2

P.

We now bound each sum separately.

The sum
∑
S1
P over S1 is bounded as

∑
S1

P ≤
∑
v,v′

∑
r,r′

Pr
R

[r] Pr
R

[r′] Pr
G∗

[
(u, u′)

G∗−−→ (v, v′)
]

1S1

=
∑
g

Pr[G∗ = g]
∑
v,v′

∑
r,r′

Pr
R

[r] Pr
R

[r′] 1
(u,u′)

g−→(v,v′)
1S1

=
∑
g

Pr[G∗ = g]
∑
r,r′

Pr
R

[r] Pr
R

[r′]1∃i,js.t. ui=u′j

= EG∗
(

Pr
r,r′

[∃i, j s.t. ui = u′j ]
) def

= θ. (10)
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Here, we denote EG∗(Prr,r′ [∃i, j s.t. ui = u′j ]) by θ. This can be interpreted as the probability that any
two different iterations have at least one query in common. Notice that the sum

∑
v,v′ 1(u,u′)

g−→(v,v′)
1S1

is equal to 1 if (v, r) and (v′, r′) are in S1.

Now, we provide a bound for the sum
∑
S2
P over S2 which is for non-colliding inputs u and u′. We

first note that, as both G∗0 and G∗1 are fromM toM, and, hence, bijective, they are indeed a uniformly
distributed permutation C∗. From now on, we use the notation C∗ for both G∗0 and G∗1.

We define x = (x1, x2, . . . , xd) and y = (y1, y2, . . . , yd) as

xi =

{
ai, if bi = 0,

vi, if bi = 1,
and yi =

{
vi, if bi = 0,

ai, if bi = 1,

where u = ((a1, b1), (a2, b2), . . . , (ad, bd)), with bi ∈ {0, 1}, is the input tuple and v = (v1, v2, . . . , vd) is its
corresponding output tuple. This is basically collecting the plaintexts and ciphertexts into two separate
tuples. Now, the sum over S2 can be rewritten into three disjoint sums as∑

S2

P =
∑
S3

A+
∑
S4

A+
∑
S5

A.

Here, S3, S4 and S5 are the three partitions of S2, i.e. S2 = S3 ∪ S4 ∪ S5, where

S3 =
{

(v, r), (v′, r′) ∈ T | ∀i, j, k,m, e, f ui 6= u′j , xk 6= x′m, ye 6= y′f

}
,

S4 =
{

(v, r), (v′, r′) ∈ T | (∀i, j, k,m ui 6= u′j , xk 6= x′m) ∧ (∃e, f ye = y′f )
}

,

S5 =
{

(v, r), (v′, r′) ∈ T |(∀i, j ui 6= u′j) ∧ (∃k,m xk = x′m)
}

, and A is

PrR[r] PrR[r′]
(

PrC∗
[
(x, x′)

C∗−−→ (y, y′)
]
− PrC∗ [x

C∗−−→ y] PrC∗ [x
′ C∗−−→ y′]

)
. Note that A and P are the

same but written in different ways. We now deal with these three sums.

The sum
∑
S3
A over S3 (all non-colliding u’s and u′’s, all non-colliding x’s and x′’s, and all non-

colliding y’s and y′’s) can be rewritten as∑
S3

A

≤ 1

2

∑
v,v′

∑
r,r′

∣∣∣Pr
R

[r] Pr
R

[r′]
(

Pr
C∗

[
(x, x′)

C∗−−→ (y, y′)
]
− Pr
C∗

[x
C∗−−→ y] Pr

C∗
[x′

C∗−−→ y′]
)
1S3

∣∣∣ (11)

=
1

2

∣∣∣Pr
C∗

[
(x, x′)

C∗−−→ (y, y′)
]
− Pr
C∗

[x
C∗−−→ y] Pr

C∗
[x′

C∗−−→ y′]
∣∣∣∑
v,v′

∑
r,r′

Pr
R

[r] Pr
R

[r′] 1S3
. (12)

Here, as
∣∣∣PrC∗

[
(x, x′)

C∗−−→ (y, y′)
]
−PrC∗ [x

C∗−−→ y] PrC∗ [x
′ C

∗

−−→ y′]
∣∣∣ is constant when there is no collision

between x and x′ and between y and y′, in the equality Line (12), we take it out from the sum. Afterwards,
as we never have ai = vj and bi 6= bj according to Assumption 2, there will not be any inner-collisions
in x. Therefore, when xi 6= x′j and yi 6= y′j for all i and j, we have

P1 = Pr
[
(x, x′)

C∗−−→ (y, y′)
]

= M−1(M − 1)
−1 · · · (M − 2d+ 1)

−1

and

P2 = Pr
[
x

C∗−−→ y
]

= M−1(M − 1)
−1 · · · (M − d+ 1)

−1
.

Then, we have

|P1 − P 2
2 | =

1

M

1

M − 1
· · · 1

M − 2d+ 1
− 1

M2

1

(M − 1)2
· · · 1

(M − d+ 1)2
,

because P1 ≥ P 2
2 .
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Now, we bound the equality in Line (12) as

1

2

∣∣∣Pr
C∗

[
(x, x′)

C∗−−→ (y, y′)
]
− Pr
C∗

[x
C∗−−→ y] Pr

C∗
[x′

C∗−−→ y′]
∣∣∣∑
v,v′

∑
r,r′

Pr
R

[r] Pr
R

[r′] 1S3

≤ 1

2

(
1

M(M − 1) · · · (M − 2d+ 1)
− 1

M2(M − 1)2 · · · (M − d+ 1)2

)
M2d (13)

≤ e8d
2/M

2
− d(d− 1)

2M
− 1

2
. (14)

Note that the inequality in Line (13) is due to fact that the sum in Line (12) is bounded by the total
number of v and v′ which is M2d and P1 ≥ P 2

2 .
In order to prove the inequality in Line (14), we rewrite it as

1

2

(
1

1− 1
M

1

1− 2
M

· · · 1

1− 2d−1
M

)
− 1

2

(
1

(1− 1
M )2

1

(1− 2
M )2

· · · 1

(1− d−1
M )2

)
.

Now, we maximize (1− 1/M)−1(1− 2/M)−1 · · · (1− (2d− 1/M))−1. We use two inequalities such
that (1− 1/x)−1 ≤ 1 + 2/x when |x| ≥ 2, which holds for x = M as M ≥ 2 (according to the statement

of Theorem 5) and
(
1 + r/k

)k ≤ er, when 1 + r/k ≥ 0, then, the upper bound is

1

1− 1
M

1

1− 2
M

· · · 1

1− 2d−1
M

≤ e8d
2/M .

In addition, we get

1

(1− 1
M )2

1

(1− 2
M )2

· · · 1

(1− d−1
M )2

≥ 1 +
d(d− 1)

M
.

by using geometric series formula, i.e. (1− x)−1 =
∑∞
n=0 x

n for |x| < 1 implying (1− 1/x)−1 ≥ 1 + 1/x
for |x| > 1. Hence, we get the desired upper bound for the expre

Furthermore, the sum over S4,
∑
S4
A, will be the sum over all colliding y’s and y′’s, all non-colliding

x’s and x′’s, and all non-colliding u’s and u′’s. When x and x′ are non-colliding, it is not possible to

have colliding y and y′. Hence, we have PrC∗
[
(x, x′)

C∗−−→ (y, y′)
]

= 0. Therefore, the sum over S4 will be
negative, i.e. ∑

S4

A ≤ 0. (15)

Finally, we provide a bound for the sum S5,
∑
S5
A, as∑

S5

A ≤
∑
v,v′

∑
r,r′

Pr
R

[r] Pr
R

[r′] Pr
G∗

[
(u, u′)

G∗−−→ (v, v′)
]

1S5

=
∑
g

Pr[G∗ = g]
∑
v,v′

∑
r,r′

Pr
R

[r] Pr
R

[r′] 1
(u,u′)

g−→(v,v′)
1S5

(16)

= EG∗(Pr
r,r′

[∃i, j s.t. xi = x′j | ∀k,m s.t. uk 6= u′m])

def
= γ

≤ d2

M
. (17)

Here, we define γ = EG∗(Prr,r′ [∃i, j s.t. xi = x′j | ∀k,m s.t. uk 6= u′m]) to be the probability that x and
x′ collide when there is no collision between u and u′.

We find γ ≤ d2/M as follows. There is only one way for x and x′ to collide when there is no collision
between u and u′. This happens when a same query is from both u (resp. u′) and v′ (resp. v). In detail,
let ui = (ai, bi) and u′j = (a′j , b

′
j) be two respective entries from u and u′, and vi and v′j be their

corresponding output. When bi = 0, b′j = 1 and ai = v′j , then there is a collision in x and x′ such that
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xi = x′j . As u and v′ are independent, the probability that u and v′ collide is less than d2/2M. Similarly,
we have the same result for u′ and v.

Now, if we sum up all the results given in Lines (10), (14), (15) and (17), then we have

V (T (G∗)) ≤ θ +
e8d

2/M

2
+
d2

M
− 1

2

by setting d/2M ≤ d2/2M .
When we substitute V (T (G∗)) in Line (8), then we have

|p− p∗| ≤ 5
3

√(
2θ + e8d2/M +

2d2

M
+

3ε

2
− 1
)
n2 + nε.

ut

Allowing θ ≈ δ to compare Theorem 1 with Theorem 5, we observe that the bound for adaptive
attacks is higher than the bound for non-adaptive attacks. This fact comes with no surprise. Adaptive
adversaries are stronger than non-adaptive adversaries, in general, and adaptive queries can provide the
adversary with some advantages.

4.3 Some Important Remarks

It is worth mentioning that Theorem 5 of Section 4.2 poses two questions. Not surprisingly, similar
questions were posed by Theorem 1 and we answered these questions in Section 3 by providing two
counterexamples that are not intuitive. These counter-intuitive examples can also be applied to the
adaptive case since the Feistel ciphers used in the solution to both questions are decorrelated by the
adaptive norm, and non-adaptive attacks are a subset of adaptive attacks.

5 Generalization of Adaptive Iterated Distinguishers

Adaptive plaintext-ciphertext iterated distinguishers can be generalized in a way that the distinguisher
in each iteration produces an information Ti which is not binary, that is, it takes values from a finite set
{1, 2, . . . , k} . Here, we find a bound for these generalized distinguishers as follows.

Theorem 6 Let G ∈ G be a random function from M× {0, 1} to M such that ||[G]2d − [G∗]2d||A ≤ ε,
for some given d ≤ M/2, where G∗ is the ideal random function and |M| = M . Let us consider an
adaptive iterated distinguisher of order d, AAI(d), who is trying to distinguish G from G∗ by performing
n iterations (see Algorithm 6). We let Ti take values from the set {1, 2, . . . , k} . Then, the advantage
AdvAAI(d)

of AAI(d) is

AdvAAI(d)
≤ 5k

3

√(
2θ + e8d2/M +

2d2

M
+

3ε

2
− 1
)
n2 + nkε,

where θ is the probability that any two different iterations have at least one query in common.

Proof Let us define T j(g) = Pr[Ti = j] for j = 1, . . . , k, where Ti denotes the output of iteration i. As in
Theorem 5, the advantage of the distinguisher will be

|p− p∗| =
∣∣∣ Pr
G,r1,...,rn

[(T1(G), . . . , Tn(G)) ∈ Acc]− Pr
G∗,r1,...,rn

[(T1(G∗), . . . , Tn(G∗)) ∈ Acc]
∣∣∣.

We write

Pr
G,r1,...,rn

[(T1(G), . . . , Tn(G)) ∈ Acc] = EG

( ∑
(t1,...,tn)∈Acc

n∏
i=1

T ti(G)

)
= EG(s(T 1(G), . . . , T k(G))),

where s(α1, . . . , αk) =
∑

(t1,...,tn)∈Acc
∏n
i=1 αti .
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Therefore, we get

|p− p∗| = |EG(s(T 1(G), . . . , T k(G)))− EG∗(s(T 1(G∗), . . . , T k(G∗)))|.

Let us define the hybrid as

sj = s(T 1(G), . . . , T j(G), T j+1(G∗), . . . , T k(G∗)),

where sk = s(T 1(G), . . . , T k(G)) and s0 = s(T 1(G∗), . . . , T k(G∗)). We obtain

|s(T 1(G), . . . , T k(G))− s(T 1(G∗), . . . , T k(G∗))| = |sk − s0|

≤
k∑
j=1

|sj − sj−1| (18)

≤ 2n

k∑
j=1

|T j(G)− T j(G∗)|. (19)

The inequality in Line (19) is same as the result in Line (4). Furthermore, the advantage of the distin-
guisher is

|p− p∗| ≤ E(|s(T 1(G), . . . , T k(G))− s(T 1(G∗), . . . , T k(G∗))|)

≤
k∑
j=1

(
2V (T j(G∗)) + 3

2ε

λ2
+ 2n

(ε
2

+ 2λ
))

(20)

≤ 5k
3

√(
2V (T (G∗)) +

3ε

2

)
n2 + nkε. (21)

The inequality in Line (20) is analogous to Line (7). In order to prove inequality in Line (21), we consider
another distinguisher with a single iteration such that its test function outputs 1 when Ti = j otherwise
(when Ti 6= j) 0. In detail, EG(T j) = Pr[T j = 1] = Pr[Ti = j] by considering (w.l.o.g) j = 1 for every
j, we notice that EG(T j) = Pr[Ti = 1] = T (g) which is defined previously in Section 4 for binary-valued
test functions. Therefore, we can replace T j(g) by T (g).

Finally, by substituting the value of V (T (G∗)), found in the proof of Theorem 5, in to Line (21), we
obtain the desired result. ut

6 Resistance against Well-Known Statistical Distinguishers

In this section, we analyze two well-known statistical distinguishers , namely boomerang and differential-
linear distinguishers, in the context of Decorrelation Theory. and provide security results dedicated for
these attacks which improve the general result of Theorem 5. More explicitly, we here measure the
highest success of an adversary with the need of the decorrelation distance of a cipher to the perfect
cipher. Although, computing this distance is not practical for most of the block ciphers, it is a remarkable
step in terms of provable security of block ciphers against these distinguishers. We show that having the
decorrelation of order 4 protects ciphers against these attacks.

6.1 Differential-Linear Distinguishers

Differential-linear distinguishers, introduced by Langford and Hellman [12], are the combination of two
seminal cryptanalysis techniques, namely differential and linear cryptanalysis. Basically, the adversary
considers the cipher as a cascade of two sub-ciphers such that he uses a truncated differential charac-
teristics for a sub-cipher and a linear approximation for the other sub-cipher. The attack is described in
Algorithm 4.
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The adversary aims at finding an efficient distinguisher with high differential-linear probability (DLP)
which is defined by

DLPc(α, b) = (2 Pr[b · c(X) = b · c(X ⊕ α)]− 1)2,

where α, b ∈ {0, 1}m, m ≥ 1, and c is an instance of a block cipher C which is defined on a message space
{0, 1}m with cardinality M = 2m, X is random variable on {0, 1}m.

In order to express differential probability in another way, we notice that

EX
(
(−1)b·c(X)+b·c(X⊕α)) = 2 Pr[b · c(X) = b · c(X ⊕ α)]− 1,

and, we get

DLPc(α, b) = E
(

(−1)b·c(X1)+b·c(X1⊕α)+b·c(X3)+b·c(X3⊕α)
)
,

where X1 and X3 are independent and uniformly distributed random variables. We obtain the average
DLP as

EC(DLPC(α, b))

= M−2
∑

x1,x2,x3,x4
y1,y2,y3,y4

(−1)b·y1+b·y2+b·y3+b·y4 Pr[(x1, x2, x3, x4)
C−→ (y1, y2, y3, y4)]1x2=x1⊕α

x4=x3⊕α
·

For the computation of EC(DLPC(α, b)) given above, we first divide the sums into two groups. The
first group considers the terms x1 = x3 (which implies that x2 = x4, y1 = y3 and y2 = y4) whose
contribution is M−1. The second group is when x1 6= x3 and y1 6= y3 (which implies x2 6= x4 and
y2 6= y4). We can split this group into four sums according to the two bits (b · y1 ⊕ b · y2, b · y3 ⊕ b · y4).
Let

∑
b1,b2

be the sum of all probabilities for (b1, b2), when x1 6= x3 and y1 6= y3. Then, we have

EC(DLPC(α, b)) = 2−m + 2−2m
∑
0,0

−2−2m
∑
1,0

−2−2m
∑
0,1

+2−2m
∑
1,1

.

The sum of four sums is
∑

0,0 +
∑

0,1 +
∑

1,0 +
∑

1,1 = 2m(2m − 1). Therefore, we have

EC(DLPC(α, b)) = 2−m + 2−2m(2m(2m − 1))− 4× 2−2m
∑
0,1

(22)

= 1− 22−2m
∑

x1 6=x3,x2,x4
y1 6=y3,y2,y4

1b·(y1⊕y2)=0
b·(y3⊕y4)6=0

Pr[(x1, x2, x3, x4)
C−→ (y1, y2, y3, y4)]1x2=x1⊕α

x4=x3⊕α
·

Notice that in (22) we use the fact that
∑

1,0 =
∑

0,1.
Notice that the expression in Line (22), we use the fact that

∑
1,0 =

∑
0,1.

Now, we compute EC∗(DLPC
∗
(α, b)) for using later in the proof of advantage of differential-linear

distinguishers. We need to compute the sum
∑

0,1 which can be divided into two following cases.

1. Where each pair of tuples (x1, x2, x3, x4) and (y1, y2, y3, y4) contain pairwise different elements. There-

fore, we have Pr[(x1, x2, x3, x4)
C−→ (y1, y2, y3, y4)] = 1/(M(M − 1)(M − 2)(M − 3)). In this case, the

number of tuples of pairwise different elements (y1, y2, y3, y4) satisfying both b · (y1 ⊕ y2) = 0 and
b · (y3 ⊕ y4) 6= 0 is 4(M/2)2(M/2− 1)(M/2− 2), and the number of tuples (x1, x2, x3, x4) satisfying
the sum is M(M − 2).

2. Where x1 6= x3, x2 6= x4, x1 = x4, x2 = x3, y1 6= y3, y2 6= y4, y1 = y4, and y2 = y3. Here, there is no
such tuples satisfying both b · (y1 ⊕ y2) = 0 and b · (y3 ⊕ y4) 6= 0 since y1 ⊕ y2 = y3 ⊕ y4.

Therefore, we obtain the expected DLP for C∗ as

EC∗(DLPC
∗
(α, b)) =

2M − 5

(M − 1)(M − 3)
.

Lemma 7 Let p(c) be the probability that differential-linear distinguisher, depicted in Figure 4, outputs
1. We let p0 be probability that it outputs 1 when the counter is incremented with probability 1

2 in each
iteration instead of querying the oracle. We have

|p(c)− p0| ≤ 2

√
nDLPC(α, b).
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Proof Similar to Lemma 15 in [25]. ut

Lemma 8 Let C be a cipher on a message space M = {0, 1}m with M = |M|, m ≥ 1. For any
differential-linear distinguisher between C and C∗, we get

AdvDL ≤ 3
3

√
DLPC(α, b) + 3

3

√
nEC∗(DLPC

∗
(α, b)).

Proof Similar to Lemma 16 in [25]. ut

Theorem 7 Let C be a cipher on a message space M = {0, 1}m with M = |M|, m ≥ 1. For any
differential-linear distinguisher between C and C∗ with n iterations, we have

AdvDL ≤ 3 3

√
n‖[C]4 − [C∗]4‖∞ +

n(2M − 5)

(M − 1)(M − 3)
+ 3 3

√
n(2M − 5)

(M − 1)(M − 3)
·

Proof We previously compute EC∗(DLPC
∗
(α, b)) = (2M − 5)/(M − 1)(M − 3). We know that∣∣∣∣∣EC(DLPC(α, b))− 2M − 5

(M − 1)(M − 3)

∣∣∣∣∣ ≤ ‖[C]4 − [C∗]4‖∞.

This result is from Theorem 2. When iterated attacks have only one iteration, for example, for 2-limited
attacks, the advantage will be bounded by the 2-decorrelation degree. However, due to the DLP which
contains four inputs due to squaring of the probability, we consider the 4-decorrelation degree here. By
using the previous lemma, we get the desired result. ut

6.2 Boomerang Distinguishers

We bound the advantage of conventional boomerang distinguishers (see Algorithm 9). Although it is
proven in Theorem 5 that in order to resist to the boomerang attack, a cipher needs to be 8-decorrelated.
When we compute this bound specifically for the boomerang distinguisher, we show that the 4 decor-
relation degree is enough. This is not surprising because a similar result has been found for differential
distinguishers. Vaudenay proves in [25] that if a cipher is decorrelated to the order 2, it can resist to
differential attacks although Theorem 1 says that decorrelation degree of 4 might be necessary.

Theorem 8 Let C be a random cipher over the message space M with |M| = M ≥ 2, and C∗ be the
perfect cipher. The advantage of the boomerang distinguisher, AdvBoo, depicted in Figure 9, is

AdvBoo ≤
n(2M − 5)

(M − 1)(M − 3)
+
n

2
‖[C]4 − [C∗]4‖A.

Proof First of all, let us define the differential probability of the boomerang distinguisher as

DPcBoo(∆,∇) = Pr
X

[c−1(c(X)⊕∇)⊕ c−1(c(X ⊕∆)⊕∇) = ∆],

where ∆ and ∇ are two strings denoting the input and the output non-zero differences, respectively.
Here, DPcBoo(∆,∇) is defined with a fixed key, that is, it is defined for an instance c of C. In order to
generalize this for any key, we consider its expected value (average value) as

EC(DPCBoo(∆,∇)) =
1

M

∑
x1,x2,x3,x4
y1,y2,y3,y4

1x1⊕x2=∆
x3⊕x4=∆
y1⊕y3=∇
y2⊕y4=∇

Pr[(x1, x2, x3, x4)
C−→ (y1, y2, y3, y4)].

Now, let us define p(c) be the probability that the distinguisher outputs 1 for a fixed key (when
C = c) which is

p(c) = 1− (1−DPcBoo(∆,∇))n, (23)

when the distinguisher has n iterations.
We compute the probability p (resp. p∗) that the distinguisher outputs 1 which is p = EC(p(C)) (resp.

p∗ = EC∗(p(C∗))). From the expression in Line (23), we have p(c) ≤ n DPcBoo(∆,∇)) which implies

that p ≤ n EC(DPCBoo(∆,∇)).

Furthermore, EC∗(DPC
∗

Boo(∆,∇)) can be found as follows.
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(a) When all xi’s are pairwise different and all yi’s are pairwise different, we have

Pr[(x1, x2, x3, x4)
C∗−−→ (y1, y2, y3, y4)] =

1

M(M − 1)(M − 2)(M − 3)
.

Here, there are M(M − 2) tuples for (x1, x2, x3, x4) and M(M − 2) tuples for (y1, y2, y3, y4) in the
sum.

(b) When x1 = x4, x2 = x3, x1 6= x3 and x2 6= x4, y1 = y4, y2 = y3, y1 6= y3 and y2 6= y4, in this case,

Pr[(x1, x2, x3, x4)
C∗−−→ (y1, y2, y3, y4)] =

1

M(M − 1)
.

And, there are M possible tuples both for (x1, x2, x3, x4) and (y1, y2, y3, y4).
Note that the case where x1 = x3 results zero in the sum since it implies y1 = y3 which contradicts
that ∇ is nonzero.

By combining the results found in Entries (a) and (b), we have

EC∗(DPC
∗

Boo(∆,∇)) =
M − 2

(M − 1)(M − 3)
+

1

M − 1
=

2M − 5

(M − 1)(M − 3)
.

which implies that p∗ ≤ n(2M − 5)/(M − 1)(M − 3).
Therefore, we have

|p− p∗| ≤ nmax

(
EC(DPCBoo(∆,∇)),

2M − 5

(M − 1)(M − 3)

)
. (24)

As the value EC(DPCBoo(∆,∇)) is not known for a random cipher, we write it in terms of the values
that we know. Hence, we consider the case when n = 1 and then we switch to the general case. As the
boomerang distinguisher is a 4-limited adaptive distinguisher when there is only one iteration, we know
from Theorem 2 that

|p− p∗| ≤ 1

2
‖[C]4 − [C∗]4‖A. (25)

When n = 1, we also have

|p− p∗| =

∣∣∣∣∣EC(DPCBoo(∆,∇))− 2M − 5

(M − 1)(M − 3)

∣∣∣∣∣. (26)

By combining the inequality in Line (25) and the equality in Line (26), we get

EC(DPCBoo(∆,∇)) ≤ 2M − 5

(M − 1)(M − 3)
+

1

2
‖[C]4 − [C∗]4‖A.

For the case n, we have the desired result according to the inequality in Line (24). ut

Notice that EC∗(DLPC
∗
(α, b)) = EC∗(DPC

∗

Boo(∆,∇)). This is not surprising, a similar result appears
in differential and linear attacks (see [25]), as well.

7 Conclusions

We settled an open problem and disproved a claim, both of which are raised by the EUROCRYPT ’99
work of Vaudenay in Decorrelation Theory. In particular, we proved that in order for a cipher C to resist
a non-adaptive iterated attack of order d, it is not sufficient to have a decorrelation of order 2d− 1. We
showed this by providing a cipher decorrelated to the order 2d−1 and a successful non-adaptive iterated
attack against it which has order d. Hence, we concluded that the minimal order of decorrelation to
ensure resistance is 2d. Furthermore, we illustrated that when the probability of having a common query
between different iterations increases, the advantage of the distinguisher can increase.
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In this work, we also study the resistance against adaptive plaintext-ciphertext iterated distinguishers
of order d which has not been explored before. We prove the bound for this distinguisher in which the
adversary is making adaptive plaintext and ciphertext queries to the oracle depending on the previous
queries. This work contributes to proving the security of previous and future designs based on Decorre-
lation Theory since, previously, there was no clue with adaptive iterated adversaries in this context. We
then generalize these distinguishers and obtain a bound for the advantage of them.

Finally, we investigate boomerang and differential-linear distinguishers.
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