22,132 research outputs found
Development of a distributed knowledge-based system
This paper describes the development of a distributed knowledge-based system. A software system, namely Distributed Algorithmic and Rule-based Blackboard System (DARBS), was developed from its predecessor ARBS, which lacked the distributed computing feature. ARBS has been used in solving a number of engineering problems [1-3]. DARBS now utilises client/server technology. It consists of a centralised database server, called the 'Blackboard' and a number of Knowledge Source Clients (experts). It distributes the workload to a number of clients which are rule-based or other AI systems with specific knowledge in various areas. DARBS is being applied to automatic interpretation of non-destructive evaluation (NDE) data and control of plasma deposition processes
Second-order Temporal Pooling for Action Recognition
Deep learning models for video-based action recognition usually generate
features for short clips (consisting of a few frames); such clip-level features
are aggregated to video-level representations by computing statistics on these
features. Typically zero-th (max) or the first-order (average) statistics are
used. In this paper, we explore the benefits of using second-order statistics.
Specifically, we propose a novel end-to-end learnable feature aggregation
scheme, dubbed temporal correlation pooling that generates an action descriptor
for a video sequence by capturing the similarities between the temporal
evolution of clip-level CNN features computed across the video. Such a
descriptor, while being computationally cheap, also naturally encodes the
co-activations of multiple CNN features, thereby providing a richer
characterization of actions than their first-order counterparts. We also
propose higher-order extensions of this scheme by computing correlations after
embedding the CNN features in a reproducing kernel Hilbert space. We provide
experiments on benchmark datasets such as HMDB-51 and UCF-101, fine-grained
datasets such as MPII Cooking activities and JHMDB, as well as the recent
Kinetics-600. Our results demonstrate the advantages of higher-order pooling
schemes that when combined with hand-crafted features (as is standard practice)
achieves state-of-the-art accuracy.Comment: Accepted in the International Journal of Computer Vision (IJCV
Nodal curves with general moduli on K3 surfaces
We investigate the modular properties of nodal curves on a low genus K3
surface. We prove that a general genus g curve C is the normalization of a
d-nodal curve X sitting on a primitively polarized K3 surface S of degree 2p-2,
for p any integer between 3 and 11 and g = p - d between 2 and p.
The proof is based on a local deformation-theoretic analysis of the map from
the stack of pairs (S,X) to the moduli space of curves of genus g that
associates to X the isomorphism class [C] of its normalization.Comment: 12 pages. Submitted preprin
Universal subgap optical conductivity in quasi-one-dimensional Peierls systems
Quasi-one-dimensional Peierls systems with quantum and thermal lattice
fluctuations can be modeled by a Dirac-type equation with a Gaussian-correlated
off-diagonal disorder. A powerful new method gives the exact disorder-averaged
Green function used to compute the optical conductivity. The strong subgap tail
of the conductivity has a universal scaling form. The frequency and temperature
dependence of the calculated spectrum agrees with experiments on KCP(Br) and
trans-polyacetylene.Comment: 11 pages (+ 3 figures), LATEX (REVTEX 3.0
The Dirac theory of constraints, the Gotay-Nester theory and Poisson geometry
The Dirac theory of constraints has been widely studied and applied very successfully by physicists since the original works by Dirac and by Bergmann. From a mathematical standpoint, several aspects of the theory have been exposed rigorously afterwards by many authors. However, many questions related to, for instance, singular or infinite dimensional cases remain open. The work of Gotay and Nester presents a mathematical generalization in terms of presymplectic geometry, which introduces a dual point of view. We present a study of the Dirac theory of constraints emphasizing the duality between the Poisson-algebraic and the geometric points of view, related respectively to the work of Dirac and of Gotay and Nester, under strong regularity conditions. We deal with some questions insufficiently treated in the literature: a study of uniqueness of solution; avoiding almost completely the use of coordinates; the role of the Pontryagin bundle. We also show how one can globalize some results usually treated locally in the literature. For instance, we introduce the globalnotion of second class submanifoldas being tangent to a second class subbundle. A general study of global results for Dirac and Gotay-Nester theories remains an open question in this theory.La Teoría de ligaduras deDirac, lateoría de Gotay-Nester y geometría dePoissin. La teoría de Dirac ha sido ampliamente estudiada y aplicada muy exitosamente por los físicos desde los trabajos originales de Dirac y de Bergmann. Desde un punto de vista matemático, varios aspectos de la teoría han sido expuestos rigurosamente por varios autores. Sin embargo, aún quedan abiertas varias preguntas relacionadas, por ejemplo, con casos singulares o infinito-dimensionales. El trabajo de Gotay y Nester presenta una generalización matemática en términos de la geometría presimpléctica, lo cual introduce un punto de vista dual. Presentamos un estudio de la teoría de ligaduras de Dirac enfatizando la dualidad entre los puntos de vista de las álgebras de Poisson y de la geometría presimpléctica, relacionados respectivamente con los trabajos de Dirac y de Gotay-Nester, bajo condiciones de regularidad fuertes. Abordamos algunas cuestiones insuficientemente tratadas en la literatura: un estudio de la unicidad de solución; evitar casi completamente el uso de coordenadas; el rol del fibrado de Pontryagin. También mostramos cómo se pueden globalizar algunos resultados usualmente tratados localmente en la literatura. Por ejemplo, introducimos la noción globalde subvariedad de segunda clasecomo variedad tangente a un subfibrado de segunda clase. Un estudio general de resultados globales para las teorías de Dirac y de Gotay-Nester sigue siendo una pregunta abierta en esta teoría.Fil: Cendra, Hernan. Universidad Nacional del Sur. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: Etchechoury, María del Rosario. Universidad Nacional de La Plata; ArgentinaFil: Ferraro, Sebastián José. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Instituto de Matemática Bahía Blanca. Universidad Nacional del Sur. Departamento de Matemática. Instituto de Matemática Bahía Blanca; Argentin
- …
