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Abstrac 

 

The Dirac theory of constraints has been widely studied and applied very 

successfully by physicists since the original works by Dirac and by Bergmann. 

From a mathematical standpoint, several aspects of the theory have been exposed 

rigorously afterwards by many authors. However, many questions related to, for 

instance, singular or infinite dimensional cases remain open. The work of Gotay 

and Nester presents a mathematical generalization in terms of presymplectic 

geometry, which introduces a dual point of view. We present a study of the Dirac 

theory of constraints emphasizing the duality between the Poisson-algebraic and 

the geometric points of view, related respectively to the work of Dirac and of Gotay 

and Nester, under strong regularity conditions. We deal with some questions 

insufficiently treated in the literature: a study of uniqueness of solution; avoiding 

almost completely the use of coordinates; the role of the Pontryagin bundle. We 

also show how one can globalize some results usually treated locally in the 

literature. For instance, we introduce the global notion of second class submanifold 

as being tangent to a second class subbundle. A general study of global results for 

Dirac and Gotay-Nester theories remains an open question in this theory.  

 

Keywords: Dirac’s theory of constraints, presymplectic manifolds, Poisson 

geometry.   

 

 

Resumen 

 

La Teoría de ligaduras de Dirac, la teoría de Gotay-Nester y geometría de 

Poissin. La teoría de Dirac ha sido ampliamente estudiada y aplicada muy 

exitosamente por los físicos desde los trabajos originales de Dirac y de Bergmann. 

Desde un punto de vista matemático, varios aspectos de la teoría han sido 

expuestos rigurosamente por varios autores. Sin embargo, aún quedan abiertas 

varias preguntas relacionadas, por ejemplo, con casos singulares o infinito-

dimensionales. El trabajo de Gotay y Nester presenta una generalización 

matemática en términos de la geometría presimpléctica, lo cual introduce un punto 

de vista dual. Presentamos un estudio de la teoría de ligaduras de Dirac 

enfatizando la dualidad entre los puntos de vista de las álgebras de Poisson y de la 

geometría presimpléctica, relacionados respectivamente con los trabajos de Dirac y 
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de Gotay-Nester, bajo condiciones de regularidad fuertes. Abordamos algunas 

cuestiones insuficientemente tratadas en la literatura: un estudio de la unicidad de 

solución; evitar casi completamente el uso de coordenadas; el rol del fibrado de 

Pontryagin. También mostramos cómo se pueden globalizar algunos resultados 

usualmente tratados localmente en la literatura. Por ejemplo, introducimos la 

noción global de subvariedad de segunda clase como variedad tangente a un 

subfibrado de segunda clase. Un estudio general de resultados globales para las 

teorías de Dirac y de Gotay-Nester sigue siendo una pregunta abierta en esta 

teoría.  

 

Palabras clave: teoría de ligaduras de Dirac, variedades presimplécticas, geometría 

de Poisson.  

 

* Académico Correspondiente de la Academia Nacional de Ciencias Exactas, Físicas y Naturales 

 

1. Introduction 

 

References, preliminaries and a description of the main works related to the present 

paper will be given in section 2. Here we will give a brief overview. The Dirac theory of 

constrained Hamiltonian systems was written by Dirac in terms of the canonical Poisson 

brackets in the space of classical observables (functions on the phase space) avoiding the notion 

of constraint submanifolds, which, on the other hand, is naturally present in the theory. For 

instance, instead of introducing the final constraint submanifold, as we do, the notion of weak 

equality of functions is preferred. This indicates a deliberate decision of Dirac to study the 

Poisson-algebraic aspect of constrained Hamiltonian systems, a point of view that is 

appropriate for quantization, which gave a very successful theory. 

 

However, from the point of view of classical mechanics the states are points in phase 

space and the constraint submanifolds also play an important role in understanding the 

geometry of the equations of motion and solution curves. This point of view also suggests, for 

instance, that one can view a constrained Hamiltonian system as an IDE (Implicit Differential 

Equation). Then the Dirac algorithm, as well as several questions about dynamics like the 

existence of solutions for the initial condition problem, has a meaning also in the context of 

IDEs, which is an active field of study. 

 

In many papers after Dirac’s work, for instance the work of Gotay and Nester, cited 

in the next section, the geometric side of his theory has been developed and proved very useful. 

The geometric side is, in a sense, dual to the algebraic side and this duality is apparent in the 

commutative diagrams of subsection 3.2 where geometric diagrams have a Poisson-algebraic 

counterpart. This algebro-geometric possibility of approaching questions is present throughout 

the paper. Even though there are many beautiful works emphasizing the Poisson-algebraic or 

the geometric aspects our main references will be the works of Dirac and those of Gotay and 

Nester, respectively. 

 

The notion of Dirac structure (Courant and Weinstein [10], Courant [11], Bursztyn 

and Crainic [1]) is originated in part in Dirac’s work and gives a new possibility to understand 

and extend the theory. The present paper should be followed soon by a generalization in the 

realm of Dirac geometry. 

 

In section 2 we review the Gotay-Nester and the Dirac algorithms and define the 

notion of secondary constraint submanifolds, in particular, the final constraint submanifold. 
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Both the primary and the final constraint submanifolds are important for writing equations of 

motion. 

 

In subsection 3.2 we perform a careful study of the primary and final constraint 

submanifolds and various quotient manifolds and commutative diagrams, which helps to 

understand important aspects of the dynamics, for instance, the question of uniqueness of 

solutions. The latter is related to the notion of physical variables. We also study the dual point 

of view using the Poisson algebra of first class constraints and various quotients and 

commutative diagrams, which shows the duality between the geometric and the Poisson-

algebraic points of view. In subsection 3.3 we show that the second class constraint 

submanifolds are submanifolds of the phase space tangent to a second class vector subbundle 

along the final constraint submanifold, which may lead to a classification, at least in some 

examples, of second class constraint submanifolds modulo tangency. The second class vector 

subbundle carries enough information to write the Dirac bracket at points of the final 

constraint submanifold. We write equations of motion in terms of the Dirac bracket in 

subsection 3.4. 

 

Another feature of our work is that notions such as second class constraint 

submanifolds and Dirac brackets, or at least their restriction to them, are defined globally (in 

the sense explained in lemma 3.19 and theorem 3.20), and notions such as the standard Dirac 

bracket appear as coordinate expressions of a global object. 

 

Along this paper we assume strong regularity conditions that lead, for instance, to 

the fact that the Dirac bracket is locally constant (in coordinates) which can be established 

using the Weinstein splitting theorem. 

 

 

2.  Constraint Algorithms 

 

Implicit Differential Equations.  We now briefly review some basic results 

concerning general IDEs and constraint algorithms. We do this just because we find useful to 

realize that some aspects and concepts of Dirac’s theory are of a more general nature, not 

necessarily related to mechanics or Poisson geometry. Let M  be a given differentiable manifold. 

An IDE on M , written as  

 

     ( , ) = 0,x x  (1) 

 

of which ODEs ( ) = 0x f x  or algebraic equations ( ) = 0x  are considered trivial particular 

cases, appear naturally in science and technology. A solution of (1) at a point x  is a vector 

( , ) xx x T M
 satisfying (1). A solution curve, say ( )x t , ( , )t a b , must satisfy, by definition, that 

( ( ), ( ))x t x t  is a solution at ( )x t  for all ( , )t a b . In the local case, M  is an open set of 
nR  and 

the IDE can be written equivalently in the form  

 

     =x u  

     0 = ( , ),x u  
that is,  

 

     ( ) = ( ),A y y f y  
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where = ( , )y x u  and ( ) = ( , ( , ))f y u x u . This is by definition a quasilinear IDE. 

 

Basic questions such as existence, uniqueness or extension of solutions are not 

completely answered yet, although many partial results in this direction have been established. 

One of the common features of those results is that they show, at least under certain regularity 

conditions, how to transform, using a certain constraint algorithm, a given IDE into an 

equivalent parameter dependent ODE on a certain final constraint manifold. 

 

Very briefly, the idea consists in finding a decreasing sequence of constraint 

submanifolds 1 cM M M  
, which appears naturally by imposing the condition of 

existence of a solution 
( , ) kx x TM

 to the given IDE at a each point 1kx M



. Under certain 

additional conditions, like locally constant rank conditions, the original IDE is reduced to an 

equivalent ODE depending on parameters on the final constraint submanifold cM
, which, by 

construction, has the fundamental property that it must contain all solutions curves of the 

given IDE. 

 

In spite of the simplicity of the general algorithm, there are fundamental examples 

where extra meaningful structures are used to build the submanifolds kM
 and to write the 

equations of motion. Moreover, in the Dirac approach the sequence of submanifolds kM
 is not 

emphasized and the methods of Poisson geometry are used, for good reasons. 

 

We can compare Dirac [15], Gotay et al. [21], Pritchard [34], Rabier and Rheinboldt 

[35], Cendra and Etchechoury [7], to see how the idea of the algorithm works in different 

contexts. In Cendra and Etchechoury [7], one works in the realm of subanalytic sets; in Gotay et 

al. [21] one works with presymplectic manifolds; in Pritchard [34] one works with complex 

algebraic manifolds; Dirac [15] uses Poisson brackets; in Rabier and Rheinboldt [35] some 

degree of differentiability of the basic data is assumed, and, besides, some constant rank 

hypothesis is added, essentially to ensure applicability of some constant rank theorem. Some 

relevant references for general IDEs connected to physics or control theory, which show a 

diversity of geometric or analytic methods or a combination of both are Cariñena and Rañada 

[5], de León and Martín de Diego [12], Delgado-Téllez and Ibort [14], Gràcia and Pons [22, 23], 

Ibort et al. [25], Marmo et al. [30], Mendella et al. [31]. 

 

In the present paper we will concentrate on the Dirac and the Gotay-Nester points of 

view (which represent the algebraic and the geometric side), see Dirac [15, 16, 17] and Gotay et 

al. [21]. One may say that some aspects of Dirac’s idea have been nicely formalized and 

generalized in Gotay et al. [21] in the context of presymplectic geometry on reflexive Banach 

manifolds. Both the algebraic and the geometric aspects of Dirac’s theory have been treated by 

many people, cited below, with different ideas. The Dirac algorithm is not the same as the 

Gotay-Nester algorithm although the two methods are essentially equivalent in fundamental 

examples, like degenerate Lagrangian systems, as shown in Gotay et al. [21]. The Dirac 

algorithm provides explicit equations of motion written in terms of the canonical bracket of the 

ambient symplectic manifold and a total Hamiltonian depending on parameters. Besides, the 

Dirac approach yields the Dirac bracket defined in a neighborhood of the final constraint 

submanifold. Equations of motion written in terms of the Dirac bracket are specially simple and 

elegant, as we will see. On the other hand, the IDE obtained on the final constraint submanifold 

by the Gotay-Nester algorithm does not depend on any parameters or an embedding in a 

symplectic manifold.  
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General assumptions.  All manifolds involved will be finite-dimensional smooth 

manifolds and all maps will be smooth, unless otherwise specified. Several arguments in this 

paper are of a local character, but they can be regarded as coordinate versions of global results. 

For instance, this is the case for the notion of second class constraints, which represent a second 

class constraint submanifold. 

 

The Gotay-Nester and the Dirac constraint algorithms studied in this paper can be 

considered as particular ways of writing the general constraint algorithm for (quasilinear) IDEs 

mentioned above, using the special structure available in each case (presymplectic structures, 

symplectic and Poisson structures, respectively). Therefore, the sequence of secondary 

constraints kM
, =1,k  is the same for all these algorithms. It is important to have a criterion 

to ensure that this sequence stops. We will assume that each 1kM
  is a closed submanifold of 

kM
 defined by equations. Also, we assume that for each k  and each 1kx M




, if 

1dim = dimx k x kM M
 , then k px M




 and 
dim = dimx k x k pM M

  for all pN . This implies that 

the sequence stabilizes, that is there is some c  such that 
=c c pM M

 , for all pN . 

For each kM
 one has the corresponding k -th IDE, which can be written as  

 
( ) = ( ),k kA x x f x

 

where 
( ) = ( ) |k x kA x A x T M

 and 
= |k kf f M

. A point x  will be in 1kM
 , by definition, iff this 

equation has a solution ( , )x x . We will assume throughout the paper that the rank of 
( )kA x

 is 

locally constant on 1kM
 . This implies that the rank of 

( )cA x
 is locally constant on cM

, and on 

each point of cM
 there is at least one solution that is tangent to cM

. The main property of cM
 

from the dynamical point of view is that every solution curve to the original system must lie on 

cM
. Since we are assuming the locally constant rank condition, the final system on cM

 can be 

converted, at least locally, into a parameter-dependent family of ODEs. 

 

 

2.1  A brief review of Dirac’s theory 

Dirac’s theory of constraints has been extensively studied from many different points of view 

and extended in many directions. An important part of those developments is contained in 

Cantrijn et al. [2], Cariñena et al. [3, 6], Cariñena [4], Cariñena and Rañada [5], de León et al. 

[13], Gotay and Nester [18, 19], Henneaux and Teitelboim [24], Ibort et al. [26], Krupková [27, 

28], Marmo et al. [30], Mukunda [32, 33], Skinner [36], Skinner and Rusk [37, 38], Sudarshan 

and Mukunda [40], van der Schaft [41]. 

 

There is a certain duality between the Dirac approach, in which the role of 

constraints as being functions on the phase space and the canonical bracket is essential, and 

the approach of many other authors, starting with Gotay and Nester, where, in addition, the 

geometry behind the canonical Poisson algebra on phase space is emphasized. This duality is 

present along this paper, and in this sense, our main references will be Dirac [17] and Gotay et 

al. [21]. 

 

We will recall some essential aspects of the Dirac theory of constraints, following 

Dirac [17], but using a more modern language, adapted to our purposes, and assuming 

explicitly certain regularity conditions. 
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Dirac’s theory starts with a given singular Lagrangian system :L TQ R , since in 

the case of a regular Lagrangian the theory becomes trivial. Then, in order to construct a 

Hamiltonian theory one must consider from the beginning the image of the Legendre 

transformation, which may be a very complicated subset 0M T Q
. By definition, solution 

curves to the Hamiltonian system must be exactly the image of solutions to Euler-Lagrange 

equations under the Legendre transformation. Natural questions such as existence of solution 

curves to the Euler-Lagrange equations for a given initial condition are not completely solved in 

general, to the best of our knowledge. In order to obtain this kind of results one would need to 

choose mathematically precise hypotheses, a topic not considered in Dirac’s work.  

 

In this paper we will assume a general hypothesis about regularity, under which 

this kind of problem is easier. Regularity means, among other hypotheses to be established 

along the paper as they are needed, that certain sets 0 1M M
 are submanifolds of T Q  

defined regularly by equations 
( ) = 0k

i , 
=1, , ki a

, = 0,1,k . The 
( )k

i  are functions defined 

on T Q  constructed by the Dirac constraint algorithm and called constraints. The 

submanifolds kM
 are called the constraint submanifolds. 

 

As usual, one assumes that the algorithm stops for =k c . One also assumes that the 

ranks of the matrices 
( ) ( )({ , }( ))c c

i j x 
 and 

( ) (0)({ , }( ))c

i j x 
 are locally constant on the final 

constraint submanifold cM
.  

 

Each 
(0)

i  is called a primary constraint and each 
( )c

i  is called a final 

constraint. Generically, 
( )k

i , =1, ,k c , are called secondary constraints. The main 

property of the final constraint submanifold cM
 is that any motion of the classical particle, that 

is, any solution 
 ( ), ( )q t p t

, must remain in cM
, and Dirac shows how to write Poisson 

equations of motion in terms of position and momentum using the canonical Poisson bracket on 

T Q  and the total Hamiltonian TH
. For given initial conditions belonging to cM

, solutions 

are not necessarily unique and Dirac interprets this fact as being due to the nonphysical 

character of some of the variables. Of fundamental importance for Dirac’s theory, especially 

for quantization, are the classification of constraints into first class and second class in terms 

of certain commutation relations, and the construction of a Poisson bracket 
*{,}  called the 

Dirac bracket. An important result is that with respect to the Dirac bracket all final 

constraints 
( )c

i  appear to be first class constraints, in other words, 
( ) ( ) *{ , } ( ) = 0c c

i j x 
, for all 

cx M
. Dirac’s procedure also shows how to deal with the nonphysical variables and find the 

correct notion of state of the system. One shows that there are physically meaningful 

variables in terms of which the evolution for a given initial state is determined. This is 

important from the classical and also from the quantum mechanics point of view. 

 

Now, we will be more precise. The image of the Legendre transformation 

:FL TQ T Q , that is, 0 = ( )M FL TQ
, contained in the canonical symplectic manifold T Q , is 

assumed to be defined by equations 
(0) = 0i , 0=1, ,i a

, where each 
(0) :i T Q  R

 is a primary 

constraint, by definition. 
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In the case in which the Legendre transformation is degenerate the Hamiltonian 

:H T Q R  is not uniquely defined from the formulas ( , ) = ( , )pv L q v H q p , = ( , ) /p L q v v  , 

but in Dirac’s theory one assumes that such a function can be conveniently defined on 0M
 

(which can be done in examples using ideas akin to the Pontryagin maximum principle, like the 

fact that for each 0( , )q p M
 the derivative of ( , )pv L q v  with respect to v  is 0 ) and then 

extended, more or less arbitrarily, to T Q . Then one defines, following Dirac, the total 

Hamiltonian 
(0)

(0)= i

T iH H  
, with arbitrary parameters (0)

i
 to be determined. The Dirac 

constraint algorithm goes as follows. The preservation of the primary constraints is written 
(0){ , }( ) = 0i TH x

, 0=1, ,i a
, 0x M

, or  

 
(0) (0) (0)

(0) 0 0{ , }( ) { , }( ) = 0, , =1, , , .j

i i jH x x i j a x M    
 

 

Then 1M
 is defined by the condition that 1x M

 if and only if there exist 
1 0

(0) (0) (0)= ( , , )
a

  
 such that the system of equations 

(0)( ) = 0i x
, 

(0){ , }( ) = 0i TH x
, 0=1, ,i a

, is 

satisfied. Clearly, 0 1M M
, and one assumes that 1M

 is a submanifold regularly defined by 

equations, say, 
(1) = 0i , 1=1, ,i a

, where each 
(1)

i  is a secondary constraint, by definition. By 

proceeding iteratively one obtains a sequence 0 1M M 
, and we will assume that this 

sequence stops. Then there are final constraints, say 
( )c

i , 
=1, , ci a

, defining regularly a 

(nonempty by assumption) submanifold cM
 by equations 

( ) = 0c

i , 
=1, , ci a

, called the final 

constraint submanifold, and the following condition is satisfied. For each cx M
 there exists 

1 0
(0) (0)( , , )

a
 

 such that  

 
( ) ( ) (0)

(0) 0{ , }( ) { , }( ) = 0, =1, , , =1, , .c j c

i i j cH x x i a j a   
 (2) 

 

For each cx M
 the space of solutions of the linear system of equations (2) in the 

unknowns (0)

j
 is an affine subspace of 

0
a

R , called 
( )c

xS
 whose dimension is a locally constant 

function 
( ) ( ) (0)

0( ) = rank({ , }( ))c c

i jd x a x 
. One can locally choose 

( )( )cd x  unknowns as being 

free parameters and the rest will depend affinely on them. Then the solutions of (2) form an 

affine bundle 
( )cS  over cM

. After replacing 
( )

(0)

cS 
 in the expression of the total 

Hamiltonian, the corresponding Hamiltonian vector field,  

 
(0) (0)( ) = ( ) ( ),j

H H
T

j

X x X x X x



 

cx M
, which will depend on the free unknowns, will be tangent to cM

. Its integral curves, for 

an arbitrary choice of a time dependence of the free unknowns, will be solutions of the 

equations of motion, which is the main property of the final constraint submanifold cM
 from 

the point of view of classical mechanics. The lack of uniqueness of solution for a given initial 

condition in cM
, given by the presence of free parameters, indicates, according to Dirac, the 

nonphysical character of some of the variables. In our context the physical variables can be 

defined on a quotient manifold. 
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Remark.  Dirac introduces the notion of weak equality for functions on T Q . Two 

such functions are weakly equal, denoted f g , if 
| = |c cf M g M

. Then, for instance 
( ) 0k

j 
. 

If 0f   then 
( )= i c

if  
, for some functions 

i  on T Q  and conversely. Since we have introduced 

the notion of a constraint submanifold, in particular the final constraint submanifold, we prefer 

not to use the notation  . 

 

Now let us make some comments on the notions of first class and second class 

constraints. The rank of the matrix 
( ) ( )({ , }( )), , =1, ,c c

i j cx i j a 
, is necessarily even, say, 2s , 

and it is assumed to be constant. Then, using elementary properties of determinants (like 

adding to a row or column a linear combination of the other rows or columns) one can find, at 

least locally in a neighborhood of each point cx M
, functions i

, 
=1, , 2ci a s

, and j , 

=1, ,2j s , such that the equations 
= 0i

, 
= 0j , define cM

 regularly and, besides, 

{ , }( ) = 0i i x   , 
{ , }( ) = 0i j x 

, 
det({ , }( )) 0j j x   

, for , =1, ,i i   
2ca s

, , =1, ,2j j s
 and 

cx M
. In fact, we will assume that this is can be done globally, for simplicity. The 

( )c

j  are 

linear combinations with smooth coefficients of the j  and i
, and conversely. The functions 

j , =1, ,2j s , are called second class constraints and the functions i
, 

=1, , 2ci a s
, 

are called first class constraints. 

 

More generally, any function   on T Q  satisfying 
| = 0cM

, 
{ , } | = 0i cM 

, 

{ , } | = 0j cM 
, is a first class constraint with respect to the submanifold cM

, by definition. 

Any function g  on T Q  satisfying 
{ , } | = 0i cg M

, 
{ , } | = 0j cg M

, is a first class function, by 

definition. For instance, the total Hamiltonian TH
 is a first class function. 

Now define the Hamiltonian ch
 in terms of i

, j , 
=1, , 2ci a s

, =1, ,2j s , as  

  

= .i j

c i jh H    
 

The preservation of the constraints for the evolution generated by ch
 can be rewritten as 

{ , }( ) = 0i ch x
, which is equivalent to 

{ , }( ) = 0i H x
 for all cx M

, and 
{ , }( ) = 0j ch x

, for all 

cx M
. The latter is equivalent to  

  

{ , }( ) { , }( ) = 0, , =1, ,2 ,j

i i jH x x i j s   
 

 

for all cx M
, which determines the 

j  as well-defined functions on cM
. Then the solutions 

( ( ), )x   form an affine bundle with base cM
 and whose fiber, parametrized by the free 

parameters  , has dimension 
2ca s

. 

 

Any section ( ( ), ( ))x x   of this bundle determines ch
 as a first class function. This 

means that 
( )h x c

c
X x T M

, for each cx M
, and therefore a solution curve of 

h
c

X
 is contained 
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in cM
 provided that the initial condition belongs to cM

. We will show in this section that there 

is a symplectic manifold cM
 such that one can pass to the quotient c cM M

 and also ch
 

passes to the quotient ch
 in such a way that solution curves of ch

 become solutions curves of 

the Hamiltonian ch
. Moreover, we will show that there is a manifold cM

 and natural maps 

c c cM M M 
 such that the Hamiltonian ch

 passes to the quotient to a function ch
 on cM

. 

The extended Hamiltonian defined by Dirac is related to ch
. One can show that ch

 passes to 

the quotient via c cM M
 to the function ch

 defined above.  

 

Dirac defines an interesting bracket, now called the Dirac bracket,  

 

   
*{ , } = { , } { , } { , },ij

i jF G F G F c G 
 

 

which is defined on an open set in T Q  containing cM
, where 

ijc , which by definition is the 

inverse matrix of 
{ , }i j 

, is defined. The Dirac bracket is a Poisson bracket and has the 

important property that, for any function F  on T Q , the condition 
*{ , } = 0jF 

, =1, ,2j s , is 

satisfied on a neighborhood of cM
, which implies that 

*= { , } = { , }c cF F h F h
, for any function F . 

Besides, 
*{ , } = 0j i 

, 
, =1, , 2ci j a s

, on cM
. Because of this, one may say that, with respect 

to the Dirac bracket, all the constraints j , =1, ,2j s  and i
, 

=1, , 2ci a s
, are first class 

with respect to cM
. This is important for purposes of quantization. 

 

 

2.2  A brief Review of the Gotay-Nester Theory 

 

In this section we recall some aspects of the Gotay-Nester theory which we need. This theory 

was developed in Gotay et al. [21] to deal geometrically with the Dirac-Bergmann theory of 

constraints. The main equation studied is an IDE of the type  

  

i ( ) = ( ),x x x 
 (3) 

 

where   is a closed 2-form on a manifold M  and 
1( )M   is a closed 1-form on M . As we 

have indicated before this kind of equation appears naturally in classical Lagrangian 

mechanics, in fact, we will show later that the Euler-Lagrange equations can be rewritten 

equivalently in the form  

 

    
i ( ) = ( ),x x d x E

 (4) 

 

which is clearly of the type (3).  

 

Description of the Gotay-Nester Algorithm.  As we mentioned in the 

Introduction, in order to deal with IDEs one can apply a basic idea which consists in building a 

sequence of constraint submanifolds. 
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Let us first describe that basic approach for a system like (3) without using explicitly 

the presymplectic form, and later on we will briefly explain how the presymplectic form can be 

used to write equations for the constraint submanifolds explicitly. The latter is an important 

contribution of the Gotay-Nester algorithm.  

 

We want to find solution curves to (3). Let ( )x t  be such a solution curve; then for 

each t  the linear algebraic system 

 

   
   ( )i ( ) = ( ) ,v t x t x t 

 
 

has at least one solution, namely, ( ) = ( )v t x t . This implies that, for each t , ( )x t  must belong to 

the subset 

 

   1 = { | i ( ) = ( ) has at least one solution }.v xM x M x x v T M  
 

 

Assume, as in Gotay et al. [21], that 1M
 is a submanifold of M . Since 1( )x t M

 for all t  we 

must have that ( ) 1( ) x tx t T M
 for all t . This implies that, for each t , ( )x t  must belong to the 

subset 

 

   2 1 1= { | i ( ) = ( ) has at least one solution }.v xM x M x x v T M  
 

 

We can continue in a similar way and define 1kM
  recursively as  

 

   1 = { | i ( ) = ( ) has at least one solution }.k k v x kM x M x x v T M 


 
 

 

This sequence stabilizes, under the General Assumptions described at the beginning 

of this section. Under the assumption that the map 

  

: |x c cT M T M M ç

 
 

has locally constant rank on the final constraint manifold cM
, existence of local solution curves 

to (3) for each initial condition in cM
 is guaranteed. For given local coordinates 

 1, , mx x
 on 

cM
 and for a given initial condition 0 cx M

 one can fix some appropriate coordinates as 

functions of t , say 1( ), , ( )rx t x t
, where = dim kerr  , in a neighborhood of 0x

 and then solve 

(3) uniquely for 1( ), , ( )r mx t x t
 . More precisely, in local coordinates our equation becomes  

 

   
( ) = ( ),j

ij ix x x 
 (5) 

 

=1, ,dimi M , =1, ,j m . Since = dim kerr  , in a neighborhood of a given point 0x
 one can 

solve, after relabeling the coordinates if necessary, 1= ( , , )r k r k rx x x x
  , =1, ,k m r . After 

choosing arbitrarily the curves 1( ), , ( )rx t x t
 and replacing in (5) one obtains a time-dependent 
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ODE in the remaining variables 1, ,r mx x
 . We can also interpret the previous arguments by 

saying that the implicit differential equation  

 

   
( )( ,) = ( ), cx x x x M  

 

is an ODE on cM
, depending on r  parameters. 

 

The following geometric description will be useful later on. Since by assumption r  

does not depend on cx M
, at least locally, then the equation on cM

  

 

   ( )( ,) = ( ),x X x   (6) 

 

where cX TM
, defines an affine distribution on cM

 of locally constant rank. More precisely, 

one has an affine bundle 
( )cS  with base cM

 whose fiber 
( )c

xS
 at a given point cx M

 is, by 

definition,  

 

   
( ) = { |(6) is satisfied}.c

x x cS X T M
 (7) 

 

Remark.  (a) If rank ( )x  is not locally constant we still have a distribution 
( )cS  on 

cM
, but it may be singular. The analysis of existence of solution curves in this case may be 

difficult, see Cendra and Etchechoury [7], Pritchard [34] and references therein. The algorithm 

developed in Cendra and Etchechoury [7] for a general system of the type ( ) = ( )a x x f x , with 

analytic data, represents an improvement of the previous basic ideas also in the sense that the 

final system obtained after applying the algorithm always has locally constant rank, and that 

singular cases are also studied using desingularization methods. 

 

(b) In Gotay et al. [21] it is explained how solutions can be expressed 

using brackets, as in Dirac’s work.  

 

Example.  Let :L TQ R  be a Lagrangian, degenerate or not. Since the problem is 

of a local nature we can use local coordinates. Let ( , , ) = ( , )q v p pv L q vE  and let 
2 *( )TQ T Q   be the presymplectic form 

= i

idq dp 
 on the Pontryagin bundle 

=M TQ T Q . Then Euler-Lagrange equations are written equivalently in the form of 

equation (4) with = ( , , )x q v p . In fact, we have  

 

   ( , , )i =i i i

q v p i i idq dp q dp p dq 
 (8) 

 

   

= i i

ii i

i

d dq dp dv
q p v

  
 

  

E E E
E

 (9) 

 

   

= ( , ) i i i

i ii i

L L
q v dq v dp p dv

q v

  
    
    (10) 
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Using equations (8)–(10) we can easily see that (4) is equivalent to 

  

     =i iq v  

     

= ( , )i i

L
p q v

q



  

     
0 = ( , ),i i

L
p q v

v



  

 

which is clearly equivalent to the Euler-Lagrange equations. The idea of using the Pontryagin 

bundle to write important equations of physics like Euler-Lagrange or Hamilton’s equations 

appears in Cendra et al. [9], Livens [29], Skinner [36], Skinner and Rusk [37, 38], Yoshimura 

and Marsden [43, 44].  

 

Describing the Secondary Constraints Using  .  The constraint manifolds kM
 

defined by the algorithm can be described by equations written in terms of the presymplectic 

form  , which is a simple but important idea. Depending on the nature of   one may obtain 

analytic, smooth, linear, etc., equations, which may simplify matters in given examples. This 

idea is also important in the context of reflexive Banach manifolds, as remarked in Gotay et al. 

[21]. Besides, those equations will obviously be invariant under changes of coordinates 

preserving  . 

 

The condition defining the subsets 1kM
 , = 0,1,k  (calling 0 =M M

 to uniformize 

the notation) namely,  

 
i ( ) = ( ) has at least one solution ,v x kx x v T M  

 

is equivalent to 
 ( ) x kx T M 

ç

. Since 
    =x k x kT M T M

ç

, we have  

 
 1 = { | ( ), = {0}}.k k x kM x M x T M





  

 
 

 

3  Main Results 

3.1  Preliminaries 

 

We will need the following results about linear symplectic geometry which are an 

essential part of many of the arguments in our treatment of Dirac and Gotay-Nester theories. 

This is because under our strong regularity assumptions those theories are, to a certain extent, 

linear. 

 

Lemma 3.1. Let ( , )E   be a symplectic vector space of dimension 2n , V E  a given 

subspace. For a given basis i , =1, ,i r  of V , let 
#= , =1,i iX i r

. Then the rank of the 

matrix 
[ ( )]i jX

 is even, say 2s , and 
, =1, ,iX i r

 form a basis of V 
. Moreover, the basis 

, =1, ,i i r
 can be chosen such that for all =1, ,j r   

 

   ,( ) = , 1i j i j sX i s 


 
 

   ,( ) = , 1 2i j i s jX s i s 


   
 

   
( ) = 0, 2 < .i jX s i r 
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Proof. Consider the subspace 
#= ( )V V

. By a well-known result there is a basis 

, =1, ,iX i r
 of V


 such that for all =1, ,j r   

 

 ,( , ) = , 1i j i j sX X i s


  
 

 ,( , ) = , 1 2i j i s jX X s i s


    
 

 
( , ) = 0, 2 <i jX X s i r 

 
 

then take
=i iX ç

. The first part of the lemma is easy to prove using this.   

 

 

Lemma 3.2. Let i , =1, ,i r  be a basis of V  having the properties stated in 

Lemma 3.1. Then iX
, = 2 1, ,i s r  form a basis of V V .  

Proof. Let 
= i

iX X
 be an arbitrary vector in V 

. Now 
i

iX V V  
 iff 

( ) = ( ( )) = 0, =1, ,i

j j iX X j r  
. Since the first 2s  columns of the matrix 

[ ( )]i jX
 are 

linearly independent and the rest are zero, we must have = 0i , for 1 2i s  , and 
i , 

= 2 1, ,i s r  are arbitrary. This means that V V  is generated by iX
, = 2 1, ,i s r . 

   

 

Corollary 3.3. dim = 2V V r s  .  

Proof. Immediate from lemma 3.2.    

 

Let   be the pullback of   to V  via the inclusion. Then ( , )V   is a presymplectic space. In 

what follows, the 
ç
 and 

#
 operators are taken with respect to   unless specified otherwise. 

 

Lemma 3.4. =V V V  .  

Proof. X V  iff ( , ) = 0,X Y Y V    iff ( , ) = 0,X Y Y V   . This is equivalent to 

X V V  .    

 

Lemma 3.5. Let 
, =1,i i r

 be a given basis of V  and let 
#= , =1,i iY i r

. Let 
*E   be given. Then the following conditions are equivalent. 

 

(i) ( ) = 0V . 

(ii) The linear system  

  

( ) ( ) = 0j

i j iY Y  
 (11) 

 

has solution 
1= ( , , )r   .  

Proof. Let us show that (11) has solution 
1( , , )r   iff the system  

 

   
( ) ( ) = 0l

k l kX X  
 (12) 
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has solution 
1( , , )r  , where , =1,k l r  and l  is a basis satisfying the conditions of lemma 

3.1. Since 
, =1,iY i r

 and 
, =1,kX k r

 are both bases of V


 there is an invertible matrix 

[ ]i

kA
 such that 

= i

k k iX A Y
. Let 

[ ]l

iB
 be the inverse of 

[ ]i

kA
, so 

= l

i i lY B X
. Assume that (11) has 

solution , =1,j j r . We can write (11) as  

  

( ) ( , ) = 0, =1, , .j

i j iY Y Y i r  
 

 

Using this we have that for =1, ,k r   

 

   

0 = ( ) ( , ) = ( ) ( , )

= ( ) ( , ) = ( ) ( , )

i j i j

k i j k i k j k

j l l

k j l k k l k

A Y Y A Y X Y X

X B X X X X X

   

   

   

   
 

 

where 
=l j l

jB 
. This means that the system (12) has solution. The converse is analogous. 

Using this, lemmas 3.2 and 3.4, and the form of the coefficient matrix 
[ ( )]l kX

 in lemma 3.1, 

the proof that (12) has solution 
1= ( , , )r    iff ( ) = 0V  is easy and is left to the reader. 

  

 

Lemma 3.6. Consider the hypotheses in lemma 3.5. Then the solutions to  

  

= |Xi V 
 (13) 

 

(if any) are precisely 
#= j

jX Y 
, where 

1( , , )r   is a solution to (11). A solution to (13) 

exists if and only if ( ) = 0V . If   is symplectic then (11) and (13) have a unique solution and 

if, in addition, 
# V  , then 

1 = 0 , ..., = 0r  and 
#  coincides with 

#
= ( | )X V   defined by 

(13).  

 

Proof. Since jY
, =1, ,j r  form a basis of V


 we have that 

1( , , )r   is a solution 

to (11) iff 
( )( ) = 0j

j V   
 iff 

j

j V    ç

 iff 
# j

jY V  
. Now, let 

#= j

jX Y 
, where 

1( , , )r   satisfies (11). Then we have X V  as we have just seen and we also have  

  

= ( ) | = | = ( ) | = | ,j

X X ji i V X V V V     ç

 
 

since 
, =1, ,j j r

 generate V . We have proven that X  is a solution to (13). To prove that 

every solution X  to (13) can be written as before, we can reverse the previous argument. Using 

this, it is clear that if   is symplectic then (11) has unique solution, in particular, we have that 

 det ( ) 0j iY 
. If, in addition, 

# V   then 
#=j

jY X V  
. Since jY

, =1, ,j r  is a basis 

of V


, using lemma 3.4 and the fact that = {0}V

 we get that = 0j  for =1, ,j r .   
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Corollary 3.7. Let = { | (11)}satisfies  . Then dim = 2 = dim kerr s   .  

Proof. ker =V , which has dimension 2r s  from corollary 3.3 and lemma 3.4. On the other 

hand the dimension of the subspace of   satisfying (11) is clearly also 2r s , since the 

coefficient matrix has rank 2s .   

 

 

3.2  A Poisson-Algebraic and Geometric Study of the Primary and Final Constraint 

Submanifolds 

 

The Dirac algorithm, briefly explained in the previous subsection, can be applied to 

any given constrained Hamiltonian system ( , , , )P H M  where ( , )P   is a symplectic 

manifold, the primary constraint submanifold M  is a given submanifold of P  defined regularly 

by an equation = 0  and H  is a Hamiltonian defined on P . This is because the particular 

cotangent bundle structure of the symplectic manifold T Q  is not essentially used in the Dirac 

algorithm. 

 

For instance, an interesting variant of the Dirac algorithm for a degenerate 

Lagrangian system is the following. Consider the canonical symplectic manifold =N T TQ

 with 

the canonical symplectic form  , and let the primary constraint be =M TQ T Q , canonically 

embedded in N  via the map given in local coordinates ( , , , )q v p  of N  by ( , , ) = ( , , ,0)q v p q v p . 

In particular, M  is defined regularly by the equation = 0 . If   is the presymplectic form on 

M  obtained by pulling back the canonical symplectic form of 
*T Q , then 

* =  . This 

embedding is globally defined (see Appendix for details). 

 

Remark.  For a given presymplectic manifold ( , )M   one can always find an 

embedding   into a symplectic manifold ( , )P   such that 
* =  . Moreover, this embedding 

can also be chosen such that it is coisotropic, meaning that M  is a coisotropic submanifold of P  

(see Gotay and Sniatycki [20]). However, we should mention that the embedding given above is 

not coisotropic. 

 

The number pv  is a well-defined function on M  and it can be naturally extended to 

a function on a chart with coordinates ( , , , )q v p , but this does not define a function on N  

consistently. In any case, it can be extended to a smooth function on N  and any such extension 

will give the same equations of motion. The Dirac theory of constraints is essentially a local 

theory. However, we will see a global version of the notion of Dirac bracket, in a sense, as well 

as its local descriptions. 

 

Consider the function : M RE  given by = ( , )pv L q vE . Using the fact that E  

can be extended naturally on a chart with coordinates ( , , , )q v p  and taking an appropriate 

partition of unity we can choose once and for all an extension to a smooth function E  on N  

called the Energy. Then we can apply the Dirac algorithm to the constrained Hamiltonian 

system ( , , , )N M E . 
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There are some interesting features in this approach, as compared with the one 

described in subsection 2.1, where the symplectic manifold is T Q  and the primary constraint 

is the image of the Legendre transformation. For instance, the primary constraint 

=M TQ T Q  is well defined in a natural way as a closed submanifold of the symplectic 

manifold N . Besides, the comparison with the Gotay-Nester approach becomes clear from the 

beginning and the Euler-Lagrange equations are derived quickly as a differential-algebraic 

equation (DAE). On the other hand, this approach may have the disadvantage of introducing 

the extra variable  , which may lead to longer calculations in some examples. 

 

We shall start with the constrained Hamiltonian system ( , , , )N M E , and we will 

work locally, for simplicity. We will call (0)

i
, 0=1, ,i r

, the primary constraints 
i  defining 

0M M
 regularly by equations. 

 

We will emphasize the Gotay-Nester point of view and we will see how it combines 

with the Dirac procedure. 

 

Accordingly, we shall study the Dirac dynamical system on the manifold 
*=M TQ T Q , already considered in the example at the end of subsection 2.2 where the Dirac 

structure is associated to a presymplectic form   which is the pullback of the symplectic form 

  on 
*=N T TQ  via the inclusion M N . Then M  is the primary constraint. Then the 

equation to be solved, according to the Gotay-Nester algorithm, is the equation  

  

( )( ,) = ( ) | ,xx X d x T M E
 (14) 

 

where x cX T M
 and cx M

, cM
 being the final constraint. Let c  be the pullback of   via 

the inclusion of cM
 in N . Since c  is presymplectic, 

ker c  is an involutive distribution. 

From now on we will assume the following. 

 

Assumption 1K
. The distribution 

ker c  has constant rank and defines a regular 

foliation cK
, that is, the natural map 

:K c c
c

p M M
, where 

= /c c cM M K
 is a submersion. 

 

Lemma 3.8. The following assertions hold: 

(a) There is a uniquely defined symplectic form c  on cM
 such that 

=K c c
c

p  

. 

(b) Let X  be a given vector field on cM
. Then there is a vector field X  on cM

 that is 

K
c

p
-related to X . 

(c) Let 
( )cf MF

. Then there exists a vector field X  on cM
 such that X  is 

K
c

p
-

related to f
X

, and for any such vector field X  the equality 
( )( ,) = ( )( )c K

c
x X d p f x 

 holds for all 

cx M
. 
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(d) Let 0 0
x x cX T M

. Then one can choose the function 
( )cf MF

 and the vector 

field X  in (c) in such a way that 
0

0
( ) = xX x X

.   

 

Proof. (a) By definition, the leaves of the foliation cK
 are connected submanifolds of 

cM
, that is, each 

1 ( )K
c

p z

, cz M
, is connected. For cz M

, let cx M
 such that 

( ) =K
c

p x z
. 

For 
, z cA B T M

, as 
K

c
p

 is a submersion, there are 
, cAB M

 such that 
= , =x K x K

c c
T p A AT p B B

. 

We define 
( )( , ) = ( )( , )c cz A B x A B 

. To prove that this is a good definition observe first that it 

is a consistent definition for fixed x , which is easy to prove, using the fact that 

ker ( ) = kerc x K
c

x T p
. Now choose a Darboux chart centered at x , say U V , such that, in this 

chart, 
:K

c
p U V U 

 and 
1 2 1( , ) = ( )c cx x x 

, where 
1 2( , )c x x

 and 
1( )c x

 are independent of 

1 2( , )x x
. This shows that c  is well defined on the chart. Using this and the fact that one can 

cover the connected submanifold 

1 ( )K
c

p z

 with charts as explained above, one can deduce by a 

simple argument that 
( )c z

 is well defined. 

 

(b) Let g  be a Riemannian metric on cM
. Then for each cx M

 there is a uniquely 

determined 
( ) x cX x T M

 such that ( )X x  is orthogonal to 
ker x K

c
T p

 and 
( ) = ( )x K

c
T p X x X x

, for 

all cx M
. This defines a vector field X  on cM

 which is 
K

c
p

-related to X . 

 

(c) Given f  and using the result of (b) we see that there is a vector field X  on cM
 

that is 
K

c
p

-related to f
X

. Then, for every cx M
 and every x x cY T M

,  

 

 ( )( ( ), ) = ( ( )) ( ( )), = ( ( ))( )

= ( )( )( ).

c x c K K x K x K x K xfc c c c c

K x
c

x X x Y p x X p x T p Y df p x T p Y

d p f x Y

 



 

(d) One can proceed as in (b) and (c) and choosing f  such that 

 
#

0
0 0

( ( )) =K x K x
c c

df p x T p X
 and, besides, the metric g  such that 0

xX
 is perpendicular to 

0
ker x K

c
T p

.    

 

Definition 3.9. (a) For any subspace ( )A N F  define the distribution A TN 
 by 

( ) = { ( ) | }A fx X x f A 
. 

 

(b) The space of first class functions is defined as  

  
( ) = { ( ) | ( ) , for all }.c

f x c cR f N X x T M x M  F
 

 

In other words, 
( )cR  is the largest subset of ( )NF  satisfying  
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( ) ( ) ,c x cR

x T M 
 

cx M
. 

 

Remark.  (a) From the point of view of classical mechanics, the constraint 

submanifolds M  and cM
 seem to be at least as important as the functions 

(0)

i  and 
( )c

i  (called 

constraints by Dirac) defining them by equations 
(0) = 0i  and 

( ) = 0c

i , respectively. Dirac was 

interested in classical mechanics, where states are points in phase space, as well as in quantum 

mechanics where functions are observables and states are not points in phase space. In the 

present paper we focus mainly in classical mechanics, and therefore we need to concentrate on 

the constraint submanifolds. In particular, M  and cM
 are the only ones that play an important 

role. The other secondary constraints submanifolds seem to be less important. 

 

(b) The total Hamiltonian TH
 is a first class function, by construction. 

 

Lemma 3.10. (a) 
( )cR  is a Poisson subalgebra of ( ( ),{,})NF . 

 

(b) cM
 is an integral submanifold of 

( )cR


. Moreover, for any vector field X  on cM
 

that is 
K

c
p

-related to a vector field f
X

 on cM
 there exists a function 

( )cf R  such that 

| =c K
c

f M p f

 and 
= |f cX X M

. In particular, any vector field X  on cM
 satisfying 

( ) ker ( )cX x x
 for all cx M

 is 
K

c
p

-related to the vector field 0  on the symplectic manifold 

cM
, which is associated to the function = 0f , therefore there exists a function 

( )cf R , which 

satisfies 
| = 0cf M

, such that 
( ) = ( )fX x X x

, cx M
.  

 

Proof. (a) Let 
( ), cf g R . Then 

( )fX x
 and 

( )gX x
 are both tangent to cM

 at points 

x  of cM
 which implies that { , }( ) = [ , ]( )f g f gX x X X x

 is also tangent to cM
 at points of x  of cM

. 

This shows that 
( ){ , } cf g R . It is easy to see that any linear combination of ,f g  and also fg  

belong to 
( )cR . 

 

(b) By definition 
( )c cR

TM 
. We need to show the converse inclusion. Let 

0 0
x x cX T M

, we need to find 
( )cf R  such that 

0
0

( ) =f xX x X
. Choose the function f  and the 

vector field X  on cM
 as in lemma 3.8, (d). Choose any extension of 

K
c

p f

 to a function g  on N

. For each cx M
, we can apply lemmas 3.5 and 3.6 with 

:= xE T N
, 

:= x cV T M
, := ( )dg x , 

( )( ) := ( )c

i ix d x 
, 

=1, , ci r
. We obtain that in a neighborhood U N  of each point 0x

 of cM
 

we can choose 
C  functions ( )( )i

c x
, 

=1, , ci r
, such that  

  

 
#

( )

( )( ) = ( ) ( ) ( ) ,i c

c iX x dg x x d x 
 



Anales Acad. Nac. de Cs. Ex., Fís. y Nat., tomo 64 (2012): 117-156. 

 
 

~ 135 ~ 

 

for all cx M U 
. Let 

( )

( )( ) = ( ) ( ) ( )i c

U c if x g x x x 
, for all x U . Then we have that 

( ) = ( )f
U

X x X x
, for all cx M U 

. 

 

Now, consider a partition of unity i , i I , on N , where each i  is defined on an 

open set iU
, i I . Let J I  be defined by the condition i J  if and only if i cU M 

. Using 

standard techniques of partitions of unity and the above result one can assume without loss of 

generality that for each i J  there is a function 
U

i
f

 defined on iU
 such that 

( ) = ( )f
U

i

X x X x
, for 

all c ix M U 
. Let 

= i Ui J i
f f


, which can be naturally extended by 0  on N . Then it is easy 

to see, using the fact that 
( ) = ( ) = ( )U K

i c
f x p f x g x

, for each cx M
, that 

( ) = ( )fX x X x
, for each 

cx M
, and in particular 0 0 0= ( ) = ( )fX X x X x

.   

 

 

Lemma 3.11.  (a) Each function 
( )cf R  is locally constant on the leaves of cK

 

therefore, since they are connected, for each 
( )cf R  there is a uniquely determined 

( )cf MF
, 

called 
( )K

c
p f


, such that 

| =c K
c

f M p f

. Moreover, the vector fields 
( )fX x

, cx M
, on cM

 and 

f
X

 on cM
 are 

K
c

p
-related. 

 

(b) For each 
( )cf MF

 there exists 
( )cf R  such that 

| =c K
c

f M p f

 and the vector 

fields 
( )fX x

, cx M
, on cM

 and f
X

 on cM
 are 

K
c

p
-related.  

 

Proof. (a) Let 
( )cf R , we only need to show that f  is constant on the leaves of cK

, 

which is equivalent to showing that 
( ) | ker ( ) = 0cdf x x

, for all cx M
. For a given cx M

, let 

ker ( )x cv x
; then using lemma 3.10 (b) one sees that there is a function 

( )cg R  such that 

= ( )x gv X x
. Then we have  

  

   0 = ( ) ( ), ( ) = ( ) ( ), ( ) = ( ) ( ).c f g f g gx X x X x x X x X x df x X x 
 

Now we shall prove that fX
 and f

X
 are 

K
c

p
-related. For each cx M

 and each x x cY T M
, we 

have  

   
( ( ), ) = ( ( ), ) = ( )( ) = ( )( )( ).c f x f x x K x

c
X x Y X x Y df x Y d p f x Y 

 
 

Using this we obtain  

 

  
 ( )( ( ), ) = ( )( ( )) ( ), = ( ( ))( ),c f x c K x K f x K x K x K x

c c c c c
x X x Y x p x T p X x T p Y df p x T p Y 
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which shows that 
( ( )) = ( )K x K ff c c

X p x T p X x
, because c  is symplectic and 

x K x
c

T p Y
 represents 

an arbitrary element of 
( )p x

K
c

T M
. 

 

(b) To find f  we choose a vector field X  that is 
K

c
p

-related to f
X

 according 

tolemma 3.8 and then use 3.10, (b).    

 

Definition 3.12.   

 

 
( ) ( )= { | | = 0},c c

cI f R f M
 

 

( ) ( ) ( ) ( )

( ) = { | { , } ,for all }.c c c c

c
I

Z R f R f h I h R  
 

 

Elements of 
( )cI  are called first class constraints.  

 

Lemma 3.13. (a) 
( )cI  is a Poisson ideal of 

( )cR , that is, it is an ideal of the ring 
( )cR  

such that if 
( )cf I , then 

( ){ , } cf h I , for all 
( )ch R . 

 

(b) 

( )

( )

c

c
I

Z R
 is a Poisson subalgebra of 

( )cR .  

 

Proof. (a) Let 
( ), cf g I  and 

( )ch R . Then it is immediate that f g  and hg  belong 

to 
( )cI . For any 

( )ch R , we have 
{ , } | = ( ) | = 0c h cf h M X f M

. 

 

(b) Follows from (a), using basic Poisson algebra arguments.   

 

Lemma 3.14. The following conditions are equivalent for a function 
( )cf R . 

 

(i) 

( )

( )

c

c
I

f Z R
. 

(ii) 
| cf M

 is locally constant. 

(iii) 
( ) ker ( )f cX x x

 for cx M
.  

 

Proof. Assume (i). Then 
{ , } | = 0cf h M

 for all 
( )ch R , that is, 

( ) ( ) | = 0h cdf x X x M
. 

By lemma 3.10, (b), we know that 
( )hX x

 represents any vector in x cT M
. We can conclude that 

| cf M
 is locally constant, so (ii) holds. Now we will prove that (ii) implies (iii). Let 

| cf M
 be 

locally constant. Then for all 
( )cg R  and all cx M

,  

 
0 = ( )( ) = ( )( , )( ) = ( )( ( ), ( )).g f g c f gX f x x X X x x X x X x

 
 

Since, again by lemma 3.10, 
( )gX x

 represents any element of x cT M
, we can 

conclude that 
( ) ker ( )f cX x x

, so (iii) holds true. Now we will prove that (iii) implies (i). 

Assume that 
( ) ker ( )f cX x x

, cx M
. Then for all 

( )cg R  and all cx M
,  
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{ , }( ) = ( )( , )( ) = ( )( , )( ) = 0,g f c g fg f x x X X x x X X x

 

that is, 
( ){ , } cg f I . Using this and the definitions, we see that 

( )

( )

c

c
I

f Z R
.   

 

 

Lemma 3.15. The map 

( )( ) : ( )c

K c
c

p R M


 F
 defined in lemma 3.11 is a surjective 

Poisson map and its kernel is 
( )cI , therefore there is a natural isomorphism of Poisson algebras 

( ) ( )

( )( ) : / ( )c c

K c c
Ic

p R I M


 F
.  

 

Proof. Surjectivity of 
*( )K

c
p

 and the fact that its kernel is 
( )cI  follows immediately 

from lemma 3.11 and the definitions. This implies that 
( )( )K cIc

p
  is an algebra isomorphism. 

Also, using the definitions, for 
( ), cf g R  and any cx M

 we can prove easily that  

 

                

                

                
 

where 
*= ( )K

c
f p f

, 
*= ( )K

c
g p g

. Denote by 

( ) ( ) ( )

( ) : /c c c

c
I

R R I 
 the natural homomorphism of 

Poisson algebras. Then from the previous equalities we obtain 

 ( ) ( ) ( )( ) ( ), ( ) = { , }K c c cI I Ic
p f g f g 

 , which shows that 
( )( )K cIc

p
  is a Poisson isomorphism. In 

other words, we have the commutative diagram  

 

                                                                 
 

All the arrows are defined in a natural way and they are surjective Poisson algebra 

homomorphisms.    

  

Equations of Motion and Physical Variables.  It is immediate to see from the 

definitions that  

 

  
ker ( ) ker ( ),x c cx T M x  

 (15) 

for all cx M
. 

 

From now on we will assume the following. 

 

Assumption 2K
. (a) ker ( )x  is a regular distribution, that is, it determines a 

regular foliation K  and the natural projection 
:Kp M M

, where = /M M K , is a submersion. 
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(b) The distribution 
ker ( ) x cx T M 

 is a distribution of constant rank. 

 

Theorem 3.16. The distribution 
ker ( ) x cx T M 

 is regular and has rank 
( )( )cd x . 

Its integral manifolds are cS M
, where S  is an integral manifold of ker . Moreover, these 

integral manifolds give a foliation cK
 of cM

 which is regular, that is, the natural map 

: c cK
c

p M M
, where 

= /c c cM M K
 is a submersion. Besides, each leaf of the foliation cK

 is 

foliated by leaves of cK
, which gives a naturally defined submersion 

: c cK K
c c

p M M
. In other 

words, we obtain the commutative diagram 

 

                                                       
 

where each arrow is a naturally defined submersion.  

 

Proof. The first assertion, about the rank of the distribution 
ker ( ) x cx T M 

, is easy 

to prove. Let 0 cx M
. Then there exists a uniquely determined integral manifold S  of the 

distribution ker  such that 0x S
. Using that, by assumption, 

ker ( ) x cx T M 
 is a 

distribution of constant dimension and that 
   dim ker ( ) = dimx c x x cx T M T S T M  

 we can 

conclude that the intersection cS M
 coincides with the integral leaf of the integrable 

distribution of 
ker cTM

 containing 0x
. So we obtain the foliation cK

 of cM
. Using (15) we 

can deduce that each leaf of the foliation cK
 is foliated by leaves of cK

. The rest of the proof 

follows by standard arguments.   

 

Lemma 3.17. (a) The following diagram is commutative 

 

                                            

where the arrows are defined as follows. The maps Kp
, 

K
c

p
, 

K
c

p
 and 

K K
c c

p
 are defined in 

Assumption 1K
, Assumption 2K

 and theorem 3.16. By definition, the map cf  is the inclusion. 

The map cf  is an embedding defined by 
( ) =c cf S M S

, where S  is a leaf of the foliation K . We 

will think of cf  as being an inclusion. The vector bundle 
| cTM M

 is the tangent bundle TM  
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restricted to cM
. In other words, since cf  is an inclusion, 

| cTM M
 is identified via some 

isomorphism, called c , with the pullback of TM  by cf . We call cF
 the natural map associated 

to the pullback. 

 

(b) The presymplectic form   on M  passes to the quotient via Kp
 giving a uniquely 

defined symplectic form   on M , satisfying 
=Kp  

. The presymplectic form c , which, by 

definition is cf 


, defines uniquely a presymplectic form c  on cM
 via 

K
c

p
 satisfying 

=c cK
c

p  

, 
=c cf 

. The energy function E  on M  satisfies ( ) | ker ( ) = 0d x xE , for all cx M

, therefore it defines uniquely a 1-form on 
| cTM M

, called 
 ( ) ( | )c cF d TM M  E

. Since E  

is constant on each leaf of cK
, it also defines a function cE

 on cM
. Since c cTM TM

 via the 

inclusion cTf
 we have 

( ) | = ( )c x c cF d T M d x  E E
, for all cx M

. 

 

(c) Equation of motion (14) on cM
 passes to the quotient cM

 as  

  

( )( ( ),) = ( ) ( ),cx X x F d x   E
 (16) 

 

where 
( ) x cX x T M

. This means that if 
( ) x cX x T M

 is a solution of (14) then 

( ) := ( )x K
c

X x T p X x
, where 

= ( )
K

c
x p x

, is a solution of (16). Therefore, a solution curve ( )x t  of 

(14) projects to a solution curve 
 ( ) = ( )

K
c

x t p x t
 of (16) on cM

. Equation (16) has unique 

solution ( )X x  for each cx M
. This solution also satisfies the equation  

  

( )( ( ),) = ( ).c x X x d x E
 (17) 

However solutions to equation (17) are not necessarily unique, since 
ker ( )c x

 is not 

necessarily 0 . 

 

(d) The restriction of the energy function 
| cME

 satisfies 

  

( | )( ) | ker ( ) = 0,c cd M x xE
 

for all cx M
, therefore there is a uniquely defined function cE

 on cM
 such that 

= |K c c
c

p M E E
. 

The equation  

  

( )( ( ),) = ( )c cx X x d x E
 (18) 
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has unique solution ( )X x  for cx M
. If ( )X x  is a solution of (16) then 

( ) = ( )x K K
c c

X x T p X x
 is a 

solution of (18). Therefore, a solution curve ( )x t  of (16) projects to a solution curve 

 ( ) = ( )
K K

c c
x t p x t

 of (18) on cM
.  

 

Proof. (a) The equality 
=K K K Kc c c c

p p p
 was proven in theorem 3.16. The equality 

=c c cM M
F f  

 results immediately from the definitions. The equality 
=K c c K

c
p f f p

 

results by applying the definitions and showing that, for given cx M
, 

( ) = = ( )K c x c K
c

p f x S f p x
, where xS

 is the only leaf of K  containing x . 

 

(b) Existence and uniqueness of   and   is a direct consequence of the definitions 

and standard arguments on passing to quotients. For any cx M
 we know that there exists a 

solution X  of equation (14), from which it follows immediately that ( ) | ker ( ) = 0d x xE . The 

rest of the proof of this item consists of standard arguments on passing to quotients. 

 

(c) We shall omit the proof of this item which is a direct consequence of the 

definitions and standard arguments on passing to quotients. 

 

(d) If ( )X x  is a solution of ( )( ( ),) = ( )x X x d x E  then it is clear that it also satisfies 

( )( ( ),) = ( | )( )c cx X x d M x E
. It follows that  

  

( | )( ) | ker ( ) = 0,c cd M x xE
 

 

for all cx M
. The rest of the proof is a consequence of standard arguments on passing to 

quotients.    

 

Remark.  Recall that the locally constant function 
( )( )cd x  on cM

 is the dimension 

of the distribution 
ker ( ) x cx T M 

 on cM
 and also the dimension of the fiber of the bundle 

( )( )cS x . If 
( )( )cd x  is nonzero then there is no uniqueness of solution to equation of motion (14), 

since solution curves to that equation satisfy, by definition,  

  

( )( ,) = ( ) | ,xx x d x T M E
 

 

where 
( , ) x cx x T M

. Passing to the quotient manifold cM
 eliminates this indeterminacy and 

uniqueness of solution is recovered. This is related to the notion of physical variables mentioned 

by Dirac. 

 

3.3  First Class and Second Class Constraints and Constraint Submanifolds. The 

Tangent Bundle V


 to a Second Class Submanifold. 
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As we have said before, an important topic in the theory of constraints as developed 

by Dirac is the distinction between first class and second class constraints. His treatment is 

intended to solve systems with constraints coming from degeneracies in the Lagrangian from 

both the classical and the quantum mechanics point of view. The Poisson algebra structure of 

functions on a symplectic manifold is the context in which this theory is developed and it is not 

very geometric and almost no attention is paid to the constraint submanifolds defined by the 

several equations involved. Among several interesting references we cite Sniatycki [39] which 

has several points of contact with our work. 

 

In this paragraph we shall give a geometric framework and describe its close 

relationship to the Poisson algebra point of view to deal with the notions of first class and 

second class constraints and functions and also first class and second class submanifolds. These 

notions only depend on the final constraint submanifold cM
 and the ambient symplectic 

manifold N  and do not depend on the primary constraint 0 =M M
 or the Hamiltonian 

:H N R . Accordingly, in this paragraph we will adopt an abstract setting, where only an 

ambient symplectic manifold and a submanifold are given. This kind of abstract setting was 

studied in Sniatycki [39], in particular the notion of second class constraint submanifold and its 

connection with the Dirac bracket. 

 

Then we will go back to equations of motion in the next subsection, where the role of 

both the final and the primary constraint is essential. 

The definitions given at the beginning of this section inspire the following one. 

 

 

Definition 3.18. Let ( , )P   be a symplectic manifold and S P  a given 

submanifold. Then, by definition,  

 

 
( , ) := { ( ) | ( ) ,for all }S P

f xR f P X x T S x S  F
 

 
( , ) ( , ):= { | | = 0}S P S PI f R f S  

 

Elements of 
( , )S PR  are called first class functions. Elements of 

( , )S PI  are called 

first class constraints. The submanifold S  is called a first class constraint submanifold if 

for all ( )f PF  the condition | = 0f S  implies 
( , )S Pf I , that is, 

( , )

( , )

S P

S PI I
, where ( , )S PI

 is the 

ideal of the ring ( )PF  of all functions vanishing on S . 

 

Obviously, using the notation introduced before in the present section, 
( , ) ( )=
M N ccR R  

and 
( , ) ( )=
M N ccI I . All the properties proven for 

( )cR  and 
( )cI  hold in general for 

( , )S PR  and 
( , )S PI . 

For instance, xT S
 is the set of all 

( , )( ), S P

fX x f R
. Every function 

( , )S Pf R  satisfies 

( )( ) = 0xdf x X
, for all 

ker( ( ) | )x xX x T S 
 and 

ker( ( ) | )xx T S
 is the set of all 

( , )( ), S P

fX x f I
. 

 

The following lemma 3.19 is one of our main results. It studies the vector subbundles 

|V TP S  which classify all second class submanifolds 
VS  containing S  at a linear level, that 

is, V


 is tangent to the second class submanifold. For such a second class submanifold, which is 

a symplectic submanifold, the Dirac bracket of two functions F  and G  at points x S  can be 

calculated, by definition, as the canonical bracket of the restrictions of F  and G . This has a 
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global character. A careful study of the global existence of a bracket defined on sufficiently 

small open sets U P  containing S  which coincides with the previous one on the second class 

submanifold will not be considered in this paper. However, to write global equations of motion 

on the final constraint submanifold one only needs to know the vector bundle V


, which carries 

a natural fiberwise symplectic form. We will also describe the Dirac brackets locally, on an open 

neighborhood of any point of S , essentially as Dirac does, but in a more geometric way. 

 

All these are fundamental properties of second class constraints and constraint 

submanifolds, and theorem 3.20 collects some essential parts of them; we suggest to take a look 

at it before reading lemma 3.19. 

 

Lemma 3.19. Let ( , )P   be a symplectic manifold of dimension 2n  and S P  a 

given submanifold of codimension r . Let   be the pullback of   to S  and assume that 

ker ( )x  has constant dimension. Assume that S  is defined regularly by equations 

1 = 0, , = 0r 
 on a neighborhood U S  and assume that we can choose a subset 

1 2 1{ , , } { , , }s r   
 such that 

det({ , }( )) 0i j x  
 for all x S , where we assume that 

2 = rank({ , }( ))i js x 
, for all x S . We shall often denote 

( ) = { , }( )ij i jc x x  
 and 

( )ijc x  the 

inverse of 
( )ijc x

. Moreover, we will assume that the following stronger condition holds, for 

simplicity. Equations 1 1= B
, ..., 

=r rB
 and 1 1=C

, ..., 2 2=s sC
 define submanifolds of U  

regularly, for small enough 1, , rB B
 and 1 2, , sC C

. 

Then 

 

(a) 2 = dim ker = 2 dim dim kers r n S    . There are 
( , )S P

k I 
, =1, ,k  

2r s , which in particular implies 
{ , }( ) = 0k l x 

, 
{ , }( ) = 0k i x 

, for , =1, ,k l  2r s , 

=1, ,2i s , such that 1 2 1 2( ), , ( ), ( ), , ( )r s sd x d x d x d x   
 , are linearly independent for all 

x S . Moreover, 1 2
( ), , ( )

r s
X x X x 

  form a basis of ker ( )x , for all x S  and 

1 2 1 2( ), , ( ), ( ), , ( )r s sd x d x d x d x   
  form a basis of 

( )xT S
. 

 

(b) The vector subbundle |V TP S   with base S  and fiber 

 
 

1 2
= span ( ), , ( ) ,x x

s
V X x X x T P

  
 

satisfies  

  
= {0}x xV T S 

 (19) 

  
ker ( ) = ( )x xV x T S  

 (20) 

  
( ) (ker ( )) = ,x xV x T S  

 (21) 

x S . 

(c) There is a neighborhood U  of S  such that the equations 1 2= 0, , = 0s 
 on U  

define a symplectic submanifold S


 such that S S  and  
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 =x xT S V 


 

  
= ,x x xT S V T P 

 

for x S , where we have extended the definition of xV 

 for x S  using the expression 

 

  
 

1 2
= span ( ), , ( ) ,x x

s
V X x X x T P

  
 

for x S . The submanifold S
 has the property 

( , )

( , )

S S

S S
I I



 
, that is, S  is a first class 

constraint submanifold of S
, defined regularly by 

| = 0i S
, =1, , 2i r s , and 

( , )| S S

i S I
 

, =1, , 2i r s . Moreover, it has the only possible dimension, which is 

dim = dim dim ker = 2 2S S n s   , for symplectic submanifolds having that property. It is 

also a minimal object in the set of all symplectic submanifolds 1P P
, ordered by inclusion, 

satisfying 1S P
. 

 

(d) Let V  be any vector subbundle of |TP S  such that  

  

ker = ( ) ,V TS   (22) 

or equivalently, 

  

(ker ) = ( ) .V TSç ç

 (23) 

 

Then 
dim = 2xV s

, for x S . Let 
VS  be a submanifold of P  such that 

=V

x xT S V 

, for 

each x S . Then S  is a submanifold of 
VS . Such a submanifold 

VS  always exists. Moreover, 

for such a submanifold there is an open set U P  containing S  such that 
VS U  is a 

symplectic submanifold of P . 

 

Let x S  and let 1 2= 0, , = 0s  
 be equations defining 

VS U  for some open 

neighborhood U P   and satisfying that 1 2( ), , ( )sd x d x  
 are linearly independent for 

Vx S U  . Then, 1 2 1 2( ), , ( ), ( ), , ( )s r sd x d x d x d x   


 
 are linearly independent and 

det({ , }( )) 0i j x   
, for 

Vx S U  . All the properties established in (a), (b), (c) for 1 2, , s 
 

on S  hold in an entirely similar way for 1 2, , s  
, on S U . In particular, =VS U S . 

 

(e) Let 
  be the pullback of   to S



 and 
{,}  the corresponding bracket. For given 

, ( )F G PF  define 
:= { , }ij

i jF F c F  
 and also  

  

( ){ , } := { , } { , } { , },ij

i jF G F G F c G  
 

 

which is the famous bracket introduced by Dirac, called Dirac bracket, and it is defined for x  

in the neighborhood U  where 
( )ijc x

 has an inverse 
( )ijc x . Then, for any x S ,  
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{ , }( ) = 0iF x 

 

for =1, ,2i s , and also  

 
 ( )

| |
{ , }( ) = { , } ( ) = ( ) ( ), ( ) = { | , | } ( ).

F S G S
F G x F G x x X x X x F S G S x  

     
 

 

If we denote ( ),FX   the Hamiltonian vector field associated to the function ( )F PF , 

with respect to the Dirac bracket ( ){,}   then the previous equalities are equivalent to  

  

( ), |
( ) = ( ) = ( ).F F F S

X x X x X x 
  

The Jacobi identity is satisfied for the Dirac bracket ( ){ , }F G   on S


, that is,  

  

( ) ( ) ( ) ( ) ( ) ( ){{ , } , } ( ) {{ , } , } ( ) {{ , } , } ( ) = 0,F G H x H F G x G H F x      
 

 

for x S . 

 

(f) Let U  be an open neighborhood of S  such that 
( )ijc x

 is invertible for x U . For 

each 
2

1 2= ( , , ) s

sC C C R
 let 

=C

i i iC  
 and define 

C

S
 by the equations 

( ) = 0C

i x
, 

=1, ,2i s , x U . For any C  in a sufficiently small neighborhood of 0 , 
C

S
 is a nonempty 

symplectic submanifold of P . Define the matrix 
( ) = { , }( )

C C C

ij i jc x x  
, and also 

( )ij

Cc x
  as being 

its inverse, x U . Then, the equalities  

 
( ) = { , }( ) = { , }( ) = ( ),

CC C

ij i j i j ijc x x x c x    
 (24) 

 

and also,  

 

 
( ) ( )

{ , } ( ) = { , } ( )CF G x F G x   (25) 

 

are satisfied for all x U . All the definitions and properties proved in (e) for the case = 0C  

hold in general for any C  in a neighborhood of 0  small enough to ensure that 
C

S

 is nonempty. 

In particular, the equalities  

 
( )

| |

{ , }( ) = { , } ( ) = ( ) ( ), ( )
C

C C C C C
F S G S

F G x F G x x X x X x

    


 
 
   

 
= { | , | } ( )

C C

CF S G S x 

  (26) 

and 

 
( ),

|

( ) = ( ) = ( )C F CF C F S

X x X x X x
 

  (27) 

 

hold for 
C

x S , and any C  in such a neighborhood. The Dirac bracket ( ){ , }F G   satisfies the 

Jacobi identity for , ( )F G UF  and the symplectic submanifolds 
C

S

 are the symplectic leaves 

of the Poisson manifold ( )( ( ),{,} )U F
. By shrinking, if necessary, the open set U  and for C  in a 
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sufficiently small neighborhood of 
20 sR , the equations 

| = 0
C

k S
, =1, , 2k r s , define 

regularly a first class constraint submanifold 
CCS S U  , and the functions 

( , )| ( )
CC C CS S

k S R S
    F

 are first class constraints, that is, 
( , )|

CC CS S

k S I
 

 

=1, , 2k r s . We have that dim = dim dim ker
C C CS S  , where 

C  is the pullback of   to 
CS . One has dim = dimCS S  and dim = dim

C

S S 
, therefore dim ker = dim ker C  .  

 

Proof. (a) Let x S . We are going to use lemmas and corollaries 3.1–3.7 with 

:= ;xE T P
 

:= ;xV T S
 

:= ( )i id x 
, =1, , ;i r  := ( );x   := ( );x   = 0 . 

 

Elements 
= i

i  
, ( )i P F  such that 

( , )S PI  , which implies 
( ) xX x T S 

 for 

x S , must satisfy 
{ , }( ) = 0j x 

, or, equivalently, 
 ( ) ( ) ( ) = 0i

i
j

x d x X x 
, for =1, ,j r , 

x S . Using lemma 3.6 we see that 
( ) ker ( )X x x 

. Since one can choose 2r s  linearly 

independent solutions, say 
1= ( , , )r

i i i  
, =1, , 2i r s , we obtain elements 

( , )S P

i I 
, 

namely, 
= j

i i j  
, such that 1 2( ( ), , ( ))r sd x d x 

  are linearly independent, or, equivalently, 

taking into account lemma 3.7, that 1 2
( ( ), , ( ))

r s
X x X x 

  is a basis of ker ( )x  for x S . If 

1( )d x
, ..., 2 ( )r sd x

 , 1( )d x
, ..., 2 ( )sd x

, were not linearly independent, then there would be 

a linear combination, say 
= i

ia 
, with at least one nonzero coefficient, and some x S , such 

that 
( ) = ( )k

kd x d x  
 for some 

k , =1, , 2k r s . But then, for any =1, ,2j s , 

{ , }( ) = ( ) ( ) =j
j

x d x X x  
 

( ) ( ) = ( ) ( ) = 0k k

k j
j k

d x X x d x X x    
, which contradicts the fact 

that 
 det { , }( ) 0i j x  

. Using this and the fact that 
= 0i

, 
= 0j , = 2i r s , =1, ,2j s  

define S  regularly, we can conclude that 1( )d x
, ..., 2 ( )r sd x

 , 1( )d x
, ..., 2 ( )sd x

 is a basis 

of 
( )xT S

. 

(b) If 
( )i

x
i

X x T S 
 then 

( ) ( ) = 0i

j
i

d x X x 
, =1, ,2j s , which implies 

{ , } = 0i

j i  
, =1, ,2j s , then = 0i , =1, ,2i s , which proves (19). To prove (20) we apply 

the operator 
ç
 to both sides and obtain the equivalent equality 

1 2 1 2span( ( ), , ( )) span( ( ), , ( )) = ( )s r s xd x d x d x d x T S   



, which we know is true, as 

proven in (a). To prove (21) we apply the orthogonal operator 


 to both sides of (20). 

 

(c) Since 1 2( ), , ( )sd x d x 
 are linearly independent for x S  they are also 

linearly independent for x  in a certain neighborhood U  of S . Then 1 2( ) = 0, , ( ) = 0sx x 
 

define a submanifold S

 of U  containing S . To see that it is a symplectic submanifold choose 

x S  and apply corollary 3.7 with 
:= ;xE T P

 
:= ;xV T S

 := 0;  
:=i id 

, =1, ,2i s ; 

:= ( ) | xx T S 
. We can conclude that 

dim(ker ( ) | ) = 0xx T S
. Now let us prove that 
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 =x xT S V 


, namely, 
      1 2= span ( ), , ( ) = =x s x xT S d x d x V V   

ç

. From this, using 

that S
 is symplectic one obtains 

=x x xT S V T P 
. To prove that S S  is a first class 

constraint submanifold defined by first class constraints 
|i S

, =1, , 2i r s , on S
, we 

observe first that it is immediate that 
| = 0i S

, =1, , 2i r s , define S  regularly. It 

remains to show that 
|

( ) x
S

i

X x T S


, =1, , 2i r s , x S , where 
|S

i

X 
 is the Hamiltonian 

vector field associated to the function 
|i S

 with respect to the symplectic form 
 . This is 

equivalent to showing that  

  

 
|

( ) | = 0,jS
i

X x S




 
 

for x S  or, equivalently,  

 

   
| |

( ) ( ), ( ) = 0,
S S

i j

x X x X x

  


 
 
   

for x S . We know that 
  is the pullback of   to S


 and 

|i S
 is the pullback of i

, via 

the inclusion S U  , then we have  

 

 
 

| |
( ) ( ), ( ) = ( ) ( ), ( ) = 0,

S S i j
i j

x X x X x x X x X x

    


 
 

   

for x S , since i
 are first class constraints, =1, , 2i r s . Finally, using the definitions we 

can easily see that dim = 2 2S n s   and that dim = 2S n r  and from (a) we know that 

dim ker = 2r s  . We can conclude that 2 2 = dim dim kern s S   . 

 

(d) We know that, for x S , 
dim = 2xT S n r

, and dim ker ( ) = 2x r s  ; then 

using (22) we obtain 
dim = 2xV s

. Also from (22) we immediately deduce applying 


 to both 

sides,  

   (ker ) = ,V TS   
 

in particular TS V . Let g  be a given Riemannian metric on P  and let xW
 be the g -

orthogonal complement of xT S
 in xV 

, in particular, 
=x x xW T S V

, for each x S . Define  

 

 
= {exp( ) | , ( )( , ) =1,| |< ( ), }.V

x x x x xS tw w W g x w w t x x S 
 

 

By choosing ( )x  appropriately one can ensure that 
VS  is a submanifold and, 

moreover, it is easy to see from the definition of 
VS  that 

= =V

x x x xT S W T S V
, for each x S . 

We leave for later the proof that 
VS U  is a symplectic submanifold of P , for an appropriate 

choice of the open set U , which amounts to choosing ( )x  appropriately. 
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Assume that 1 2( ), , ( )sd x d x  
 are linearly independent for 

Vx S U  . Since 

( ), = ( ), = 0V

i x i xd x V d x T S     
 for x S  and =1, ,2i s , we can deduce that 

 ( )i xd x V  
, 

that is, 
( )i xd x V  ç

. Then using (23), we see that 1( ),d x
, 2 ( )sd x

, 1 2( ), , ( )r sd x d x 
  are 

linearly independent and span (ker ) = ( )V TSç ç

. If 
det({ , }( )) = 0i j x  

 for some x S  then 

{ , }( ) = 0i

i j x   
, where at least some 0i  , =1, ,2i s . Let 

=i

i  
, then 

{ , }( ) = 0j x 
, 

=1, ,2j s . On the other hand, since | = 0S , then 
{ , }( ) = 0j x 

, =1, , 2j r s . We can 

conclude that 
( , )S UI


  and then 

( ) ker ( )X x x 
, in particular, 

( ) = ( )j

j
X x X x 

, which 

implies 
( ) = ( ) = ( )i j

i jd x d x d x    
, contradicting the linear independence of 

1 2 1 2( ), , ( ), ( ), , ( )s r sd x d x d x d x   


 
. 

 

It follows from which precedes that by replacing i  by i , =1, ,2i s  and S  by 

S U  all the properties stated in (a), (b) and (c) are satisfied. In particular, =S U S  and 

S U  is symplectic. It is now clear that by covering S  with open subsets like the U  we can 

define U  as being the union of all such open subsets and one obtains that S U  is a symplectic 

submanifold. 

(e) Let x S . Then, since 
= { , }ij

i jF F c F  
, we obtain  

 

 
{ , }( ) = { , }( ) { , }( ) ( ){ , }( ) = { , }( ) { , }( ) = 0.ij

k k i k j k kF x F x x c x F x F x F x        
 

 

Using this we obtain  

 

 
{ , }( ) = { , { , }}( ) = { , }( )kl

k lF G x F G c G x F G x     
 

 ( )= { , }( ) { , } { , } = { , } ( ).ij

i jF G x G c F F G x  
 

For any ( )F PF , x S  and =1, ,2k s , we have 
( ) =F kX x




 
{ , }( ) = 0k F x

, so 

( )F xX x T S




. Therefore, for any x xY T S
,  

 
     ( ) ( ), = ( ) ( ), = ( ) = | ( )F x F x x xx X x Y x X x Y dF x Y d F S x Y 

 
 

 
 

 
   

|
= | ( ) = ( ) ( ), ,x x

F S
d F S x Y x X x Y 


 

which shows that |
( ) = ( )F F S

X x X x
 , where both Hamiltonian vector fields are calculated with 

the symplectic form 
 . Using this, for any ( )G PF  and any x S , one obtains  

 |
{ , }( ) = ( ) = ( ) = ( ) | = { | , | } ( ).F F

F S
G F x X x G X x G X x G S G S F S x  

    
   

 

The equality 
( ), |

( ) = ( ) = ( )F F F S
X x X x X x 

  is an immediate consequence of the previous ones. 

The Jacobi identity for the bracket ( ){,}   follows using the previous formulas, namely, for 

x S , one obtains  
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 ( ) ( ) ( ){{ , } , } ( ) = {{ , } | , | } ( ) = {{ | , | } , | } ( ),F G H x F G S H S x F S G S H S x    

       

where the bracket in the last term is the canonical bracket on the symplectic manifold S
, for 

which the Jacobi identity is well known to be satisfied. 

 

(f) The equalities (24) and (25) are proven in a straightforward way. The equations 

(26) and (27) follow easily using a technique similar to the one used in (e). Using all this, the 

proof of the Jacobi identity for the bracket ( ){,}   on U  goes as follows. Let x U  and let C  be 

such that 
C

x S . For , , ( )F G H UF  using (e) we know that the Jacobi identity holds for 

( )
{,} C  on 

C

S
. But then, according to (25) it also holds for ( ){,}   for all 

C

x S . Now we will 

prove that 
C

S
 are the symplectic leaves. Since they are defined by equations 

= 0C

i , 

=1, ,2i s  on U  we need to prove that 
{ , } ( ) = 0C

iF x
, 

Cx S , for all ( )F UF , =1, ,2i s . 

Using (25) and (26) we see that 
( ) ( )

{ , } ( ) = { , } ( ) = { | , | } ( ) = 0
C CC C C

i i C i CF x F x F S S x 

  
  

. To 

finish the proof, observe first that, since 
= 0i , 

= 0i
, =1, ,2 , =1, , 2i s j r s  define 

regularly the submanifold S U , by shrinking U  if necessary and for all C  sufficiently small, 

we have that 
= 0C

i , 
= 0i

, =1, ,2 , =1, , 2i s j r s  define regularly a submanifold 

CS U  and therefore 
| = 0

C

j S
, =1, , 2j r s , define regularly 

CS  as a submanifold of 

C

S
. To prove that it is a first class constraint submanifold and that 

|
C

j S
, =1, , 2j r s , 

are first class constraints, that is 
( , )|

C
C CS S

j S I
 

, =1, , 2j r s , we proceed in a similar 

fashion as we did in (c), replacing   by 
C . The fact that 

|
C

j S
, =1, , 2j r s , are first 

class constraints defining 
CS  implies that dim = dim dim ker

C C CS S  . From the definitions 

one can deduce that dim = dimCS S  and dim = dim
C

S S 
, therefore dim ker = dim ker C  . 

  

 

The following theorem summarizes some essential parts of the previous lemma. 

 

Theorem 3.20. Let ( , )P   be a symplectic manifold, S P  and let   be the 

pullback of   to S . Assume that ker  has constant rank. Let V  be a vector subbundle of 

|TP S  such that ker = ( )V TS  . Then there is a symplectic submanifold 
VS  containing S  of 

dimension dim dim kerS   such that the condition 
=V

x xT S V 

, for all x S  holds. The vector 

bundle V


 is called the second class subbundle tangent to the second class submanifold 
VS . 

For given functions F , G  on P , one defines the Poisson bracket { , } ( ) := { | , | }( )V V VF G x F S G S x , 

x S . We call this the V -Dirac bracket on S .   

 

Remark.  (a) Since we are interested mainly in describing equations of motion we 

will not consider the definition of a global Poisson bracket on a neighborhood of S  such that 

one of its symplectic leaves coincides with 
VS . By choosing a local regular description 

= 0k  of 
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VS  one obtains the usual expression for the Dirac bracket, as it was shown in lemma 3.19. 

Under our strong regularity conditions the symplectic leaves of the Dirac bracket give a (local) 

regular foliation of a neighborhood of the final constraint submanifold S . This implies by the 

Weinstein splitting theorem (Weinstein [42]) that there are local charts where the Dirac bracket 

is constant. 

 

(b) The tangent second class subbundle V


 in a sense (modulo tangency) classifies 

all the possible second class constraint submanifolds containing a given submanifold S P . It 

carries enough information to write the Dirac brackets along the final constraint submanifold 

S  and therefore also equations of motion, as we show in subsection 3.4. 

 

3.4  Equations of motion 

 

We are going to describe equations of motion in the abstract setting of subsection 

3.3, that is, a symplectic manifold ( , )P   and a submanifold S P , defined regularly by 

equations 
= 0i , =1, ,i a . We are going to assume all the results, notation and regularity 

conditions of that subsection. We need to introduce in this abstract setting, by definition, the 

notions of primary constraints, primary constraint submanifold and the Hamiltonian. 

 

The primary constraint submanifold is a given submanifold S P   containing 

S , and in this context, S  will be called the final constraint. We will assume without loss of 

generality that S  is defined regularly by the equations 
= 0i , =1, ,i a , with a a  , where 

each i , =1, ,i a  will be called a primary constraint while each i , = 1, ,i a a   will be 

called a secondary constraint, for obvious reasons. In this abstract setting the Hamiltonian 

is by definition a given function ( )H PF . 

 

The equations of motion can be written in the Gotay-Nester form,  

  

( )( , ) = ( )( ),x x x dH x x   
 

where 
( , ) xx x T S

, for all xx T S 
. 

 

Now we will transform this equation into an equivalent Poisson equation using the 

Dirac bracket. 

 

The condition { , }( ) = 0H x , for all x S  and all first class constraints   will 

appear later as a necessary condition for existence of solutions for any given initial condition in 

S , so we will assume it from now on. 

The total Hamiltonian is defined by 
= i

T iH H  
, =1, ,i a  where the functions 

( )i C P  , =1, ,i a  must satisfy, by definition, 
{ , }( ) = 0T jH x

, =1, ,j a , x S  or, 

equivalently,  

  

{ , }( ) { , }( ) = 0, , =1, , , =1, , ,i

j i jH x x x S i a j a     
 (28) 
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sum over =1, ,i a . We assume that the solutions 
1( , , )a 



 form a nonempty affine bundle 

S . 

For each section of   one has a Hamiltonian 
( ) = ( ) ( ) ( )i

T iH x H x x x 
, x P , and an 

equation of motion on S ,  

  

   

#= ( ) .H T
T

X dH
 

 

The equations of motion can be described nicely using the Dirac bracket as we will 

see in a moment. Choose first class and second class constraints  

  

1 2 1 2( , , , , , )a s s   
  

 

as in lemma 3.19, then since 
{ , }( ) = 0T iH x

, for any function ( )F PF  and any x S  we 

obtain  

 ( ){ , } ( ) = { , }( ) { , } ( ){ , }( ) = { , }( ), .ij

T T T i j TH F x H F x H c x F x H F x x S   
 

 

Then we can write the equations of motion in terms of the Dirac bracket as  

  

( ),( ) = ( ), .H H
T T

X x X x x S 
 (29) 

We want a more precise description of the equations of motion. The total 

Hamiltonian has the equivalent expression  

 

   
= ,i j

T i jH H        
 (30) 

 

where 
( , )

( , )

S P

i S PI R 
 

, =1, ,i a s  , are such that 1( ( ), , ( ))a sd x d x   
 

 form a basis of  

  
( , )

( , ){ ( ) | },S P

S Pd x I R   
 

 

for all x S , while ( , )i S PI 


, =1, ,i s , are such that  

  

 1 1( ), , ( ), ( ), , ( )a s sd x d x d x d x     
   

 
form a basis of  

   ( , ){ ( ) | }S Pd x I  
 

 

for all x S . Then 
 1 1, , , , ,a s s     
   

 can be chosen as a set of primary constraints which 

justifies the expression (30) for the total Hamiltonian. One can see that the rank of the matrix 

{ , }( )j i x 
, =1, ,2i s , =1, ,j s , x S  is s . Now the conditions (28) are equivalent to 

{ , }( ) = 0T jH x
, =1, , 2j a s , which gives 

{ , }( ) = 0jH x
, =1, , 2j a s  and 

{ , }( ) = 0T iH x
, 

=1, ,2i s , for all x S  which gives  

  

{ , }( ) ( ){ , }( ) = 0,j

i j iH x x x    
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=1, ,2i s , x S , from which we obtain 
j , =1, ,j s , as well-defined functions (on a 

neighborhood of S , then we can extend them arbitrarily to P ). One can write 
= k l

j j k j la b   
 

with 
, ( )k l

j ja b PF
 uniquely defined on S , for =1, ,j s , =1, , 2k a s , =1, ,2l s . Then 

the total Hamiltonian can be written  

 

  
= i j k j l

T i j k j lH H a b          
 

  ( , , )= ,i j l

S S H i j lH b    
    

 

where ( , , ) = j k

S S H j ka  


 is a first class constraint, 
( , )

( , , )

S P

S S H I  
. 

 

We can conclude, using the fact that ( ){ , } ( ) = 0k F x
, for all x S  and =1, ,2k s  

and (29), that  

  

( ) ( , , ) ( ){ , }( ) = { , } ( ) = { , } ( )i

T T S S H iH F x H F x H F x   
  

 

for any function ( )F PF  and any x S . 

 

We shall call  

   ( , , ) ( , , ) ( , , ):= i

S S S S H S S iH H     
  

 

the Hamiltonian of the system with respect to the Dirac bracket ( ){,}  , where we have denoted 

i  by ( , , )S S i 


 to emphasize that these functions depend on S  and 
'S . 

 

We have proven the following theorem. 

 

Theorem 3.21. Let ( , )P   be a symplectic manifold and S S P   given regularly 

defined submanifolds. In the situation described above, equations of motion on S  can be written 

in the following equivalent ways: 

 

(a)  

   
( ), ( ),( , , ) ( , , )

( ) = ( ) = ( )i
i

H H HT S S S S H

X x X x X x          

   
( ), ( ), ( ),

( , , )
= ( ) ( ) ( )

i

i

H
S S H

X x X x X x     


 
 (31) 

for all x S . 

 

Here ( )H PF  satisfies, by definition, { , }( ) = 0H x , for all x S  and all primary 

first class constraints  ; ( , , )S S H   is a first class constraint depending on S , S  and H ; 
( , )

1 ( , ){ , , } S P

a s S PI R    
   

 is a maximal independent (that is 1{ ( ), , ( )}a sd x d x   
 

 is linearly 

independent for each x S ) set of primary first class constraints and 
i , =1, ,i a s  , are 

arbitrary parameters. There is uniqueness of solution if and only if there are no primary first 

class constraints, that is, = 0a s  . 

 

(b)  

   ( , , ) ( )= { , } .S SF F H    
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(c)  

   ( )( , ) = ( )( ),x x x dH x x   
 

where 
( , ) xx x T S

, for all xx T S 
.   

 

 

Remark.  (a) The Hamiltonian vector field (31) depends on a finite number of 

arbitrary parameters 
i R , =1, ,i a s  . It is tangent to S  for all values of the 

parameters and it generates an affine distribution. This should be compared with the affine 

bundle in equation (7). Any vector field, even time-dependent, tX
 on P  whose restriction to S  

is a section of that distribution gives equations of motion. Note that, since 
| = 0i S

, then for 

any choice of functions, even time-dependent, 
( )i

t P F
, =1, ,i a s   we have  

 

   
( ), ( ),

( ) = ( ),i
i t i

i

t X x X x    
   


 

for all x S . 

 

(b) The equations of motion can be globalized, using the bracket {,}V

, as far as one 

can find a global ( , , )S S H  . 

 

 

4.  Future work 

 

The present work should be followed immediately by an extension of the Dirac 

theory, and also the dual Gotay-Nester theory, for the case of a Dirac dynamical system 

( , ) ( ) xx x d x D E
. This will expand the field of applications, for instance, one will have a 

theory of constraints for LC circuits and holonomic systems, if the Dirac structure D  is 

integrable. 

 

The reduction theory for the constraint algorithm will also be the purpose of future 

work. This can be approached using the category of Dirac anchored vector bundles. This will 

extend part of the results in Cendra et al. [8]. 

 

Singular cases, where the strong regularity assumptions made in the present paper 

are weakened in several ways are also important and will be the purpose of future work. 

 

 

Appendix 

Lemma A.1. There is a canonical inclusion 
* *:TQ T Q T TQ   . In addition, 

consider the canonical two-forms 
*T Q


 and 

*T TQ


 on 
*T Q  and 

*T TQ  respectively, the canonical 

projection 

* *

*pr :
T Q

TQ T Q T Q 
, and define the presymplectic two-form 

*

* *= pr
T Q T Q

 
 on 

*TQ T Q . Then the inclusion preserves the corresponding two-forms, that is, 

*

*=
T TQ

  
.  

Proof. If 
:Q TQ Q 

 and 
:TQ TTQ TQ 

 are the tangent projections, we can consider the 

dual tangent rhombic  
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Define 
* *:TQ T Q T TQ    by 

*( )q q v
q

v T TQ  
,  

  

( ) = ( ),q q v q Q v
q q

v w T w     
 

for 
v v
q q

w T TQ
. Here q qv 

 denotes an element in the Pontryagin bundle over the point 

q Q . Note that the following diagram commutes.  

  

 
 

Let us see that   is an injective vector bundle map from the bundle 
*pr :TQ TQ T Q TQ 

 to the cotangent bundle 
*:TQ T TQ TQ 

, over the identity of TQ . The 

last part of this assertion follows from the commutative diagram above. 

 

First, if 
( ) = ( )q q q qv v    

  
 then both sides are in the same fiber 

* *=v v
q q

T TQ T TQ
 , so 

=q qv v 


. Also, for all 

*

v v
q q

w T TQ
 we have  

 

  
( ) = ( )q q v q q v

q q
v w v w      

 
or  

  
( ) = ( ).q Q v q Q v

q q
T w T w    

 
 

Since 
:Q TQ Q 

 is a submersion, we have 
=q q 

 and   is injective. 

 

Second,   is linear on each fiber, since  

( ( )) = ( ) ( ) = ( ) ( )q q q v q q Q v q q v q q v
q q q q

v w T w v w v w                    
 

 

For the second part of the lemma, let us recall the definition of the canonical one-

form on 

1 *

* ( )
T Q

T Q 
. For 

*

q T Q 
, 

* ( )qT Q
 

 is an element of 

* *

q
T T Q

 such that for 
*

q q
w T T Q 

,  

  

* ( ) = ( ( )),q q QT Q q q
w T w    
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where 
*:Q T Q Q 

 is the cotangent bundle projection. With a similar notation, the canonical 

one-form 

1 *

* ( )
T TQ

T TQ 
 is given by  

 

   
* ( ) = ( ( )).v v TQT TQ q v q v

q q

w T w    

 
 

Pulling back these forms to the Pontryagin bundle by   and the projection 
* *

*pr :
T Q

TQ T Q T Q 
, we obtain the same one-form. Indeed, for 

*( )v
q q

w T TQ T Q 
, we 

get on one hand  

 

  

*

* * * * *(pr )( ) = ( ) pr ( ) = ( pr )( ),q q q q QT Q T Q T Q T Q T Q
v w T w T w        

 
 

and on the other hand  

  

*

* *( )( ) = ( ( )) ( ) =

( ) ( ( )) = ( )( ).

q q q qT TQ T TQ

q q TQ q Q TQ

v w v T w

v T T w T w

      

       

   

  
 

 

However, the following diagram commutes  

 

 

so 
*pr =Q Q TQT Q

   
 and therefore 

* *

* * *pr =
T Q T Q T TQ
  

. Taking (minus) the differential of 

this identity, we obtain 

*

*=
T TQ

  
.   

 

In local coordinates, if we denote the elements of 
*TQ T Q  and 

*T TQ  by ( , , )q v p  

and ( , , , )q v p  respectively, then ( , , ) = ( , , ,0)q v p q v p . 
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