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Abstrac

The Dirac theory of constraints has been widely studied and applied very
successfully by physicists since the original works by Dirac and by Bergmann.
From a mathematical standpoint, several aspects of the theory have been exposed
rigorously afterwards by many authors. However, many questions related to, for
instance, singular or infinite dimensional cases remain open. The work of Gotay
and Nester presents a mathematical generalization in terms of presymplectic
geometry, which introduces a dual point of view. We present a study of the Dirac
theory of constraints emphasizing the duality between the Poisson-algebraic and
the geometric points of view, related respectively to the work of Dirac and of Gotay
and Nester, under strong regularity conditions. We deal with some questions
insufficiently treated in the literature: a study of uniqueness of solution; avoiding
almost completely the use of coordinates; the role of the Pontryagin bundle. We
also show how one can globalize some results usually treated locally in the
literature. For instance, we introduce the global notion of second class submanifold
as being tangent to a second class subbundle. A general study of global results for
Dirac and Gotay-Nester theories remains an open question in this theory.

Keywords: Dirac’s theory of constraints, presymplectic manifolds, Poisson
geometry.

Resumen

La Teoria de ligaduras de Dirac, la teoria de Gotay-Nester y geometria de
Poissin. La teoria de Dirac ha sido ampliamente estudiada y aplicada muy
exitosamente por los fisicos desde los trabajos originales de Dirac y de Bergmann.
Desde un punto de vista matematico, varios aspectos de la teoria han sido
expuestos rigurosamente por varios autores. Sin embargo, ain quedan abiertas
varias preguntas relacionadas, por ejemplo, con casos singulares o infinito-
dimensionales. El trabajo de Gotay y Nester presenta una generalizacion
matematica en términos de la geometria presimpléctica, lo cual introduce un punto
de vista dual. Presentamos un estudio de la teoria de ligaduras de Dirac
enfatizando la dualidad entre los puntos de vista de las algebras de Poisson y de la
geometria presimpléctica, relacionados respectivamente con los trabajos de Dirac y
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de Gotay-Nester, bajo condiciones de regularidad fuertes. Abordamos algunas
cuestiones insuficientemente tratadas en la literatura: un estudio de la unicidad de
solucién; evitar casi completamente el uso de coordenadas; el rol del fibrado de
Pontryagin. También mostramos como se pueden globalizar algunos resultados
usualmente tratados localmente en la literatura. Por ejemplo, introducimos la
nocién global de subvariedad de segunda clase como variedad tangente a un
subfibrado de segunda clase. Un estudio general de resultados globales para las
teorias de Dirac y de Gotay-Nester sigue siendo una pregunta abierta en esta
teoria.

Palabras clave: teoria de ligaduras de Dirac, variedades presimplécticas, geometria
de Poisson.

* Académico Correspondiente de la Academia Nacional de Ciencias Exactas, Fisicas y Naturales
1. Introduction

References, preliminaries and a description of the main works related to the present
paper will be given in section 2. Here we will give a brief overview. The Dirac theory of
constrained Hamiltonian systems was written by Dirac in terms of the canonical Poisson
brackets in the space of classical observables (functions on the phase space) avoiding the notion
of constraint submanifolds, which, on the other hand, is naturally present in the theory. For
instance, instead of introducing the final constraint submanifold, as we do, the notion of weak
equality of functions is preferred. This indicates a deliberate decision of Dirac to study the
Poisson-algebraic aspect of constrained Hamiltonian systems, a point of view that is
appropriate for quantization, which gave a very successful theory.

However, from the point of view of classical mechanics the states are points in phase
space and the constraint submanifolds also play an important role in understanding the
geometry of the equations of motion and solution curves. This point of view also suggests, for
instance, that one can view a constrained Hamiltonian system as an IDE (Implicit Differential
Equation). Then the Dirac algorithm, as well as several questions about dynamics like the
existence of solutions for the initial condition problem, has a meaning also in the context of
IDESs, which is an active field of study.

In many papers after Dirac’s work, for instance the work of Gotay and Nester, cited
in the next section, the geometric side of his theory has been developed and proved very useful.
The geometric side is, in a sense, dual to the algebraic side and this duality is apparent in the
commutative diagrams of subsection 3.2 where geometric diagrams have a Poisson-algebraic
counterpart. This algebro-geometric possibility of approaching questions is present throughout
the paper. Even though there are many beautiful works emphasizing the Poisson-algebraic or
the geometric aspects our main references will be the works of Dirac and those of Gotay and
Nester, respectively.

The notion of Dirac structure (Courant and Weinstein [10], Courant [11], Bursztyn
and Crainic [1]) is originated in part in Dirac’s work and gives a new possibility to understand
and extend the theory. The present paper should be followed soon by a generalization in the
realm of Dirac geometry.

In section 2 we review the Gotay-Nester and the Dirac algorithms and define the
notion of secondary constraint submanifolds, in particular, the final constraint submanifold.
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Both the primary and the final constraint submanifolds are important for writing equations of
motion.

In subsection 3.2 we perform a careful study of the primary and final constraint
submanifolds and various quotient manifolds and commutative diagrams, which helps to
understand important aspects of the dynamics, for instance, the question of uniqueness of
solutions. The latter is related to the notion of physical variables. We also study the dual point
of view using the Poisson algebra of first class constraints and various quotients and
commutative diagrams, which shows the duality between the geometric and the Poisson-
algebraic points of view. In subsection 3.3 we show that the second class constraint
submanifolds are submanifolds of the phase space tangent to a second class vector subbundle
along the final constraint submanifold, which may lead to a classification, at least in some
examples, of second class constraint submanifolds modulo tangency. The second class vector
subbundle carries enough information to write the Dirac bracket at points of the final
constraint submanifold. We write equations of motion in terms of the Dirac bracket in
subsection 3.4.

Another feature of our work is that notions such as second class constraint
submanifolds and Dirac brackets, or at least their restriction to them, are defined globally (in
the sense explained in lemma 3.19 and theorem 3.20), and notions such as the standard Dirac
bracket appear as coordinate expressions of a global object.

Along this paper we assume strong regularity conditions that lead, for instance, to
the fact that the Dirac bracket is locally constant (in coordinates) which can be established
using the Weinstein splitting theorem.

2. Constraint Algorithms

Implicit Differential Equations. We now briefly review some basic results
concerning general IDEs and constraint algorithms. We do this just because we find useful to
realize that some aspects and concepts of Dirac’s theory are of a more general nature, not

necessarily related to mechanics or Poisson geometry. Let M be a given differentiable manifold.
An IDE on M | written as

of which ODEs x-f(x)=0 or algebraic equations #(x)=0 are considered trivial particular
cases, appear naturally in science and technology. A solution of (1) at a point X is a vector

x.x)eT,M satisfying (1). A solution curve, say X(t), te(ab)

(x(1), (1) is a solution at x(t) for all te(a b). In the local case, M is an open set of R" and
the IDE can be written equivalently in the form

, must satisfy, by definition, that

X=Uu

0 = p(x,u),
that 1s,

Aly)-y =f(y),
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where ¥ = (x,u) and fly)=(u,p(x,u)) . This is by definition a quasilinear IDE.

Basic questions such as existence, uniqueness or extension of solutions are not
completely answered yet, although many partial results in this direction have been established.
One of the common features of those results is that they show, at least under certain regularity
conditions, how to transform, using a certain constraint algorithm, a given IDE into an
equivalent parameter dependent ODE on a certain final constraint manifold.

Very briefly, the idea consists in finding a decreasing sequence of constraint

M QMlg”'QMC, which appears naturally by imposing the condition of

existence of a solution (x,X) €TM, to the given IDE at a each point Xe Mk+1. Under certain
additional conditions, like locally constant rank conditions, the original IDE is reduced to an

submanifolds

equivalent ODE depending on parameters on the final constraint submanifold M. , wWhich, by

construction, has the fundamental property that it must contain all solutions curves of the
given IDE.

In spite of the simplicity of the general algorithm, there are fundamental examples
where extra meaningful structures are used to build the submanifolds My and to write the

equations of motion. Moreover, in the Dirac approach the sequence of submanifolds My is not
emphasized and the methods of Poisson geometry are used, for good reasons.

We can compare Dirac [15], Gotay et al. [21], Pritchard [34], Rabier and Rheinboldt
[35], Cendra and Etchechoury [7], to see how the idea of the algorithm works in different
contexts. In Cendra and Etchechoury [7], one works in the realm of subanalytic sets; in Gotay et
al. [21] one works with presymplectic manifolds; in Pritchard [34] one works with complex
algebraic manifolds; Dirac [15] uses Poisson brackets; in Rabier and Rheinboldt [35] some
degree of differentiability of the basic data is assumed, and, besides, some constant rank
hypothesis is added, essentially to ensure applicability of some constant rank theorem. Some
relevant references for general IDEs connected to physics or control theory, which show a
diversity of geometric or analytic methods or a combination of both are Carifiena and Rafada
[5], de Leén and Martin de Diego [12], Delgado-Téllez and Ibort [14], Gracia and Pons [22, 23],
Ibort et al. [25], Marmo et al. [30], Mendella et al. [31].

In the present paper we will concentrate on the Dirac and the Gotay-Nester points of
view (which represent the algebraic and the geometric side), see Dirac [15, 16, 17] and Gotay et
al. [21]. One may say that some aspects of Dirac’s idea have been nicely formalized and
generalized in Gotay et al. [21] in the context of presymplectic geometry on reflexive Banach
manifolds. Both the algebraic and the geometric aspects of Dirac’s theory have been treated by
many people, cited below, with different ideas. The Dirac algorithm is not the same as the
Gotay-Nester algorithm although the two methods are essentially equivalent in fundamental
examples, like degenerate Lagrangian systems, as shown in Gotay et al. [21]. The Dirac
algorithm provides explicit equations of motion written in terms of the canonical bracket of the
ambient symplectic manifold and a total Hamiltonian depending on parameters. Besides, the
Dirac approach yields the Dirac bracket defined in a neighborhood of the final constraint
submanifold. Equations of motion written in terms of the Dirac bracket are specially simple and
elegant, as we will see. On the other hand, the IDE obtained on the final constraint submanifold
by the Gotay-Nester algorithm does not depend on any parameters or an embedding in a
symplectic manifold.
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General assumptions. All manifolds involved will be finite-dimensional smooth
manifolds and all maps will be smooth, unless otherwise specified. Several arguments in this
paper are of a local character, but they can be regarded as coordinate versions of global results.
For instance, this is the case for the notion of second class constraints, which represent a second
class constraint submanifold.

The Gotay-Nester and the Dirac constraint algorithms studied in this paper can be
considered as particular ways of writing the general constraint algorithm for (quasilinear) IDEs
mentioned above, using the special structure available in each case (presymplectic structures,
symplectic and Poisson structures, respectively). Therefore, the sequence of secondary

Mk, kzl,...

constraints is the same for all these algorithms. It is important to have a criterion

to ensure that this sequence stops. We will assume that each Misa 1s a closed submanifold of

My defined by equations. Also, we assume that for each K and each XEM"”, if

dim M, =dim, M xeM dim M, =dim, M
X k X and X X

kw1 then k+p <o for all PEN Thig implies that

. . . M. =M
the sequence stabilizes, that is there is some € such that = © c+p  for all peN .

For each My one has the corresponding K -th IDE, which can be written as
A(X)-x =f (x),
A ) =AX) [TM, and f,=fIM

where k., A point X will be in Mk+1, by definition, iff this

equation has a solution (X'X). We will assume throughout the paper that the rank of Ac(x) is
locally constant on Mk+1. This implies that the rank of A (%) 1s locally constant on M. , and on

each point of M. there is at least one solution that is tangent to M. . The main property of M.
from the dynamical point of view is that every solution curve to the original system must lie on

¢. Since we are assuming the locally constant rank condition, the final system on M. can be
converted, at least locally, into a parameter-dependent family of ODEs.

2.1 A brief review of Dirac’s theory
Dirac’s theory of constraints has been extensively studied from many different points of view
and extended in many directions. An important part of those developments is contained in
Cantrijn et al. [2], Carifiena et al. [3, 6], Carifiena [4], Carifiena and Rafnada [5], de Leén et al.
[13], Gotay and Nester [18, 19], Henneaux and Teitelboim [24], Ibort et al. [26], Krupkova [27,
28], Marmo et al. [30], Mukunda [32, 33], Skinner [36], Skinner and Rusk [37, 38], Sudarshan
and Mukunda [40], van der Schaft [41].

There is a certain duality between the Dirac approach, in which the role of
constraints as being functions on the phase space and the canonical bracket is essential, and
the approach of many other authors, starting with Gotay and Nester, where, in addition, the
geometry behind the canonical Poisson algebra on phase space is emphasized. This duality is
present along this paper, and in this sense, our main references will be Dirac [17] and Gotay et
al. [21].

We will recall some essential aspects of the Dirac theory of constraints, following
Dirac [17], but using a more modern language, adapted to our purposes, and assuming
explicitly certain regularity conditions.
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Dirac’s theory starts with a given singular Lagrangian system L:TQ—-R , since in
the case of a regular Lagrangian the theory becomes trivial. Then, in order to construct a
Hamiltonian theory one must consider from the beginning the image of the Legendre

transformation, which may be a very complicated subset Mo T Q. By definition, solution
curves to the Hamiltonian system must be exactly the image of solutions to Euler-Lagrange
equations under the Legendre transformation. Natural questions such as existence of solution
curves to the Euler-Lagrange equations for a given initial condition are not completely solved in
general, to the best of our knowledge. In order to obtain this kind of results one would need to
choose mathematically precise hypotheses, a topic not considered in Dirac’s work.

In this paper we will assume a general hypothesis about regularity, under which
this kind of problem is easier. Regularity means, among other hypotheses to be established

along the paper as they are needed, that certain sets Mo 2M,... are submanifolds of TQ

(k) — = _ (k)
defined regularly by equations 4= O, ! _1""’ak, k = 0.1... The ¢ are functions defined

on TQ constructed by the Dirac constraint algorithm and called constraints. The

submanifolds My are called the constraint submanifolds.

As usual, one assumes that the algorithm stops for K'=C_ One also assumes that the

{.47¥x) g {.4730)

ranks of the matrices are locally constant on the final

constraint submanifold M. .

(0) (c)
Each ¢ is called a primary constraint and each ¢ is called a final

¢ k=1,..c

constraint. Generically, are called secondary constraints. The main

property of the final constraint submanifold M. is that any motion of the classical particle, that

. . t), p(t . ) ) .
is, any solution (q() P )), must remain in MC, and Dirac shows how to write Poisson
equations of motion in terms of position and momentum using the canonical Poisson bracket on

T'Q and the total Hamiltonian H; . For given initial conditions belonging to M. , solutions
are not necessarily unique and Dirac interprets this fact as being due to the nonphysical
character of some of the variables. Of fundamental importance for Dirac’s theory, especially
for quantization, are the classification of constraints into first class and second class in terms

of certain commutation relations, and the construction of a Poisson bracket {} called the
Dirac bracket. An important result is that with respect to the Dirac bracket all final

WY (0=0 (o

(c)
constraints ¢ appear to be first class constraints, in other words,

X e MC. Dirac’s procedure also shows how to deal with the nonphysical variables and find the

correct notion of state of the system. One shows that there are physically meaningful
variables in terms of which the evolution for a given initial state is determined. This is
important from the classical and also from the quantum mechanics point of view.

Now, we will be more precise. The image of the Legendre transformation

FL:TQ 5T'Q_ that is, Mo =FL(TQ)

, contained in the canonical symplectic manifold T Q, 1s

©0) — 1 = ©) .71 *
assumed to be defined by equations A= O, '= 1""’a°, where each 47 TQ—-R

constraint, by definition.

is a primary
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In the case in which the Legendre transformation is degenerate the Hamiltonian
H:TQ—-R is not uniquely defined from the formulas pv —L(q,v) =H(q,p) , p=aL(q,v)/ov ,

but in Dirac’s theory one assumes that such a function can be conveniently defined on Mo
(which can be done in examples using ideas akin to the Pontryagin maximum principle, like the

fact that for each (@.p) €M, the derivative of PV -L@.v) with respect to V is O) and then

extended, more or less arbitrarily, to T'Q . Then one defines, following Dirac, the total

o H =H+1 49 . ) A, ) )
Hamiltonian 7 0f , with arbitrary parameters ~© to be determined. The Dirac

constraint algorithm goes as follows. The preservation of the primary constraints is written
{¢|(O),HT}(X)=O, 1=1,..8, xeM,
{87 H}x) + A {8, 6°Hx) =0, 1,j =1,...8, X e M,
Then M, is defined by the condition that xeM
=(A* % O (y) = © -0 i=
4o = (Aop--140)) such that the system of equations ¢ (x)= O, 7. H H(x) _O, 1=1,....8

M, oM,

1 if and only if there exist
, 18

, and one assumes that M, 1s a submanifold regularly defined by

0 i=1,.

@ — 1)
equations, say, ¢ , "ai, where each ¢ 1s a secondary constraint, by definition. By

M, oM, o...

satisfied. Clearly,

proceeding iteratively one obtains a sequence , and we will assume that this

(c)
sequence stops. Then there are final constraints, say ¢ , 1""’a°, defining regularly a

. . M . #9=0 i=1,.,a :
(nonempty by assumption) submanifold "¢ by equations " , ¢, called the final
constraint submanifold, and the following condition is satisfied. For each x M, there exists
1 3
(g1 4g)) such that

WOHI0+ 2o (A7 47100 =0, 1 =18 =18

For each X € M. the space of solutions of the linear system of equations (2) in the

Ay . . ) . .
unknowns ~©@ is an affine subspace of Rao, called Sy whose dimension is a locally constant

d©(x) = a, —rank({¢"*, g *}(x))

d©(x) :
. One can locally choose unknowns as being

function

free parameters and the rest will depend affinely on them. Then the solutions of (2) form an
. © . S .

affine bundle S  over MC. After replacing ~© < in the expression of the total

Hamiltonian, the corresponding Hamiltonian vector field,
XHT (x) =X, (x)+ ﬁ({))xgjj@ (X),
X eM,

, which will depend on the free unknowns, will be tangent to M. . Its integral curves, for
an arbitrary choice of a time dependence of the free unknowns, will be solutions of the

equations of motion, which is the main property of the final constraint submanifold M. from
the point of view of classical mechanics. The lack of uniqueness of solution for a given initial

condition in M. , given by the presence of free parameters, indicates, according to Dirac, the
nonphysical character of some of the variables. In our context the physical variables can be
defined on a quotient manifold.
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Remark. Dirac introduces the notion of weak equality for functions on TQ Two
49 ~0

such functions are weakly equal, denoted f~g , 1f FIM; =g MC. Then, for instance "

— i 4(C) ' .
If f #0 then f=v , for some functions v on TQ and conversely. Since we have introduced
the notion of a constraint submanifold, in particular the final constraint submanifold, we prefer
not to use the notation ~.

Now let us make some comments on the notions of first class and second class

(c) 4(c) Pi=

. . X)), ] =1, . .

constraints. The rank of the matrix ({4 ’¢J HEORY ' ’ac, 1s necessarily even, say, 25,
and it is assumed to be constant. Then, using elementary properties of determinants (like
adding to a row or column a linear combination of the other rows or columns) one can find, at

least locally in a neighborhood of each point X e MC, functions Vli, 1=1...5 _28, and X I
J:]‘""’ZS, such that the equations Vi :O, % =0
{v. . 3}(x)=0 {w,, x;}(x)=0 det({y;, x, }(x))=0

X eM,

, define M. regularly and, besides,

Li'=1,..., & —25’ 1L,1'=1,...,2s

, for and

(c)
. In fact, we will assume that this is can be done globally, for simplicity. The ¢i are
linear combinations with smooth coefficients of the %1 and ¥ , and conversely. The functions

£ , ) :1""'25, are called second class constraints and the functions Vi , 1=1...a - 28,
are called first class constraints.

More generally, any function © on TQ satisfying PIM; :O, oy M =0,

{o.7;}IM, =0

Any function 9 on TQ satisfying f9.wiHIM, :O, 9.7}

, 1s a first class constraint with respect to the submanifold MC, by definition.

M. =0 . . .
IM. ,1s a first class function, by

definition. For instance, the total Hamiltonian Hy is a first class function.

}(J i=1!~--!ac_28 jzl,...,ZS

Now define the Hamiltonian h, in terms of Vi , , as

h, =H+ Ay, + 1 y;.
The preservation of the constraints for the evolution generated by h, can be rewritten as

i, h }(x) = 0, which 1s equivalent to v, H}(x) =0 for all X e MC, and {Zj’hc}(x) - O, for all
X &M, . The latter is equivalent to

{2, HYO) + 4 {7 2, Y(x) =0, i,j =1,...,2s,

X eM,

j
for all , which determines the # as well-defined functions on M. . Then the solutions

(£(x), 4) form an affine bundle with base M. and whose fiber, parametrized by the free

parameters A , has dimension a,—2s .

Any section (£(x), A(X)) of this bundle determines h, as a first class function. This
th (X) eTxl\/lc X e Mc

. h . .
means that , for each , and therefore a solution curve of ¢ is contained
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in Mo provided that the initial condition belongs to Ve . We will show in this section that there

is a symplectic manifold M. such that one can pass to the quotient Me > M, and also h,

passes to the quotient h, in such a way that solution curves of h, become solutions curves of

the Hamailtonian hc. Moreover, we will show that there is a manifold M. and natural maps
Me > M. =M, such that the Hamiltonian h, passes to the quotient to a function h, on M. .

The extended Hamiltonian defined by Dirac is related to h, . One can show that h, passes to

the quotient via Me =M, to the function h, defined above.

Dirac defines an interesting bracket, now called the Dirac bracket,

{F’G}* = {F’G}_{F1Zi }Cij {ZJ 1G}1

which is defined on an open set in TQ containing M. , Where CU, which by definition is the

{x.x}

inverse matrix of , 1s defined. The Dirac bracket is a Poisson bracket and has the

important property that, for any function F on T*Q, the condition {F.x i} - 0, J=1,...2s
F={F,h}={F,

, 1s

satisfied on a neighborhood of M. , which implies that h.} , for any function F .

Besides, {l//j i} =0 , h1=1,....8 - 28, on M. . Because of this, one may say that, with respect
to the Dirac bracket, all the constraints X , 1=1,....2s and Vi , 1=1...a - 23, are first class

with respect to M. . This is important for purposes of quantization.

2.2 A brief Review of the Gotay-Nester Theory

In this section we recall some aspects of the Gotay-Nester theory which we need. This theory
was developed in Gotay et al. [21] to deal geometrically with the Dirac-Bergmann theory of
constraints. The main equation studied is an IDE of the type

I, (X) = a(X),

3

where @ is a closed 2-form on a manifold M and ¢ € Q'(M) is a closed 1-form on M. As we
have indicated before this kind of equation appears naturally in classical Lagrangian
mechanics, in fact, we will show later that the Euler-Lagrange equations can be rewritten
equivalently in the form

i, w(x) =dE(x),
which is clearly of the type (3).
Description of the Gotay-Nester Algorithm. As we mentioned in the

Introduction, in order to deal with IDEs one can apply a basic idea which consists in building a
sequence of constraint submanifolds.
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Let us first describe that basic approach for a system like (3) without using explicitly
the presymplectic form, and later on we will briefly explain how the presymplectic form can be
used to write equations for the constraint submanifolds explicitly. The latter is an important
contribution of the Gotay-Nester algorithm.

We want to find solution curves to (3). Let x(t) be such a solution curve; then for
each U the linear algebraic system

L@ (X(1) = a(x(t)),

has at least one solution, namely, v(t)= X(t). This implies that, for each t , x(t) must belong to
the subset

M, ={x e M |i,@(X) = a(X) has at least one solution v e T, M}.

X(t)eM

Assume, as in Gotay et al. [21], that M, is a submanifold of M . Since 1 for all T we

X(t) eT, M

must have that ! for all U, This implies that, for each t , x(t) must belong to the

subset

M, ={x e M, | i,o(X) = a(X) has at least one solution v e T, M }.

. . .. . M .
We can continue in a similar way and define " k! recursively as

M,., ={x e M, |i,0(X) = a(x) has at least one solutionv e T, M, }.

This sequence stabilizes, under the General Assumptions described at the beginning
of this section. Under the assumption that the map

o TM, 5>T'M|M,

has locally constant rank on the final constraint manifold M. , existence of local solution curves
X

Xpe ey Xy

to (3) for each initial condition in M. 1s guaranteed. For given local coordinates ( ) on

M X, €M, one can fix some appropriate coordinates as
r =dimker o

¢ and for a given initial condition

X, (t),..., X, (t)

functions of t , say , where , In a neighborhood of Xo and then solve

(3) uniquely for Xeaa (s X (1) . More precisely, in local coordinates our equation becomes

a)”-(X)-)'(j :ai(X), (5)

i=1,....dmM , ] :1""’m. Since ' = dim kel’a)’ in a neighborhood of a given point X0 one can

solve, after relabeling the coordinates if necessary, Xre = Xesk (Xl""’Xr), K=1,...m=r Afer

X, (t),..., X, (t)

choosing arbitrarily the curves and replacing in (5) one obtains a time-dependent
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ODE in the remaining variables Xear - Xm  We can also interpret the previous arguments by

saying that the implicit differential equation

o(X)(X,) = a(X),X € M,
is an ODE on M. , depending on ' parameters.

The following geometric description will be useful later on. Since by assumption I

XeM

does not depend on ¢ at least locally, then the equation on M.

AO(X)=ax), (g

X eTM,

, defines an affine distribution on M. of locally constant rank. More precisely,
, © . , (c) : : .

one has an affine bundle S' with base M. whose fiber Sy at a given point xeM. is, by

definition,

where

S ={X eT M_ |(6) s satisfied]}. 7

Remark. (a) If rank o(X) 1s not locally constant we still have a distribution s on
M

¢, but it may be singular. The analysis of existence of solution curves in this case may be
difficult, see Cendra and Etchechoury [7], Pritchard [34] and references therein. The algorithm

developed in Cendra and Etchechoury [7] for a general system of the type a(x)-x =f(x), with
analytic data, represents an improvement of the previous basic ideas also in the sense that the
final system obtained after applying the algorithm always has locally constant rank, and that
singular cases are also studied using desingularization methods.

(b) In Gotay et al. [21] it is explained how solutions can be expressed
using brackets, as in Dirac’s work.

Example. Let LTQ-R pea Lagrangian, degenerate or not. Since the problem is

of a local nature we can use local coordinates. Let E(q,v,p)=pv-L(@Q,V) and let

2 * — Ani
weX(TQST Q) be the presymplectic form ®=dg’ Adp

on the Pontryagin bundle
M=TQ®TQ  rThen Euler-Lagrange equations are written equivalently in the form of

equation (4) with X = @v, p). In fact, we have
iqvdd Adp, =d'dp, - pdq ®

dE = a—Eidqi +6—Edpi +8—Eidvi
oq op, ov ©)

=L (qv)dg' +v'dp +[pi —8—Li}dv‘

~ 127 ~



Anales Acad. Nac. de Cs. Ex., Fis. y Nat., tomo 64 (2012): 117-156.

Using equations (8)—(10) we can easily see that (4) is equivalent to

qi:Vi
. oL
- =—(q,v
P aq'(q )
oL
O: T T ) )
P av.(qv)

which is clearly equivalent to the Euler-Lagrange equations. The idea of using the Pontryagin
bundle to write important equations of physics like Euler-Lagrange or Hamilton’s equations
appears in Cendra et al. [9], Livens [29], Skinner [36], Skinner and Rusk [37, 38], Yoshimura
and Marsden [43, 44].

Describing the Secondary Constraints Using ?. The constraint manifolds My
defined by the algorithm can be described by equations written in terms of the presymplectic
form @ which is a simple but important idea. Depending on the nature of ¢ one may obtain
analytic, smooth, linear, etc., equations, which may simplify matters in given examples. This
1dea is also important in the context of reflexive Banach manifolds, as remarked in Gotay et al.
[21]. Besides, those equations will obviously be invariant under changes of coordinates
preserving @

to uniformize

Mk+l kzolll" MO =M

The condition defining the subsets * (calling

the notation) namely,
i,(X) = a(x) has at least one solutionv e T M,,

M) =((TM))
is equivalent to .Since( X k) ( X k)

M,z = {Xx e M [{a(x),(T M, )"y = {0}

a(X) e (Tka )Q

, we have

3 Main Results
3.1 Preliminaries

We will need the following results about linear symplectic geometry which are an
essential part of many of the arguments in our treatment of Dirac and Gotay-Nester theories.
This is because under our strong regularity assumptions those theories are, to a certain extent,
linear.

Lemma 3.1. Let (E,©) be a symplectic vector space of dimension 2N, VcE, given

- — o : # - :
subspace. For a given basis & , ! =1...r of V', let X =l 1""r. Then the rank of the
matrlx [al(xj)] xi1| =1!
o, =1,...r

. Q .
reel form a basis of V' . Moreover, the basis
or

IS even, say 25, and

can be chosen such that for all j=1,..
al(XJ):é‘l'st, 1S| <Ss
(X,)==6_,, s+1<i<2s

i-s,j?

a(X;)=0, 2s<i<r.
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. Ve = (\Y °)# . .
Proof. Consider the subspace . By a well-known result there is a basis

Xid =Ll pV® uch that forall | =1i--"

Q(X;, X;)=0,,,,1<i<s
Q(X;, X;) =5, S+1<i<2s

i-s,j?

Q(X;,X;)=0,2s<i<r
—_ ¢
then take % ~ X . The first part of the lemma is easy to prove using this.

Lemma 3.2. Let ai, 1 =1 be a basis of V° having the properties stated in

Lemma 3.1. Then xi, i =2s+1,...r form a basis of V Ve,

‘Proof. Let X=4X
aj(X):/i'(aj(Xi)):O,j =1,...r

i Q
AX eV Ve .

[y (X))
linearly independent and the rest are zero, we must have A :O, for 1<i SZS, and /1i,

1=2s+1,....r are arbitrary. This means that VNV g generated by xi, ':25+1""’r.

be an arbitrary vector in Ve Now

. Since the first 2S columns of the matrix e

Corollary 3.3. dmV NV®=r-2s
Proof. Immediate from lemma 3.2.

Let @ be the pullback of © to V via the inclusion. Then (V, ) 1s a presymplectic space. In

what follows, the © and i operators are taken with respect to €2 unless specified otherwise.

Lemma 3.4. V° =V NV®,
Proof. X eV” iff o(X,Y)=0,vY eV iff QX,Y)=0,vY EV. This is equivalent to
X eVnVe

1,...r =yt i=1,.r

Lemma 3.5. Let /' = be a given basis of V' and let Y . Let

peE be given. Then the following conditions are equivalent.

(i) BNV ) :0.

(ii) The linear system
ﬂ(Yi)+iJ7j(Yi) :0 (11)

A= A7)

has solution

1 r
Proof. Let us show that (11) has solution (45...47)

iff the system
,B(Xk)+y'a,(xk):0 (12)

~ 129 ~



Anales Acad. Nac. de Cs. Ex., Fis. y Nat., tomo 64 (2012): 117-156.

1 r _
has solution (ot ), where Kl =17 and % is a basis satisfying the conditions of lemma
3.1. Since Vil =11 and X k=1,...r
i _ i | i
[A] such that Xy = AkYi. Let [B] be the inverse of [Ak], S0

iy =
solution AL =k . We can write (11) as

are both bases of Ve there is an invertible matrix

_pR
Yi =B X'. Assume that (11) has

BY)+AQY,Y,)=0,i=1,..r.

Using this we have that for k=1,...r

0 :ﬂ(ALYi)_Fle(Yj’ALYi) = ﬂ(xk)+ﬁ’jQ(Yj’ X,)
= ,B(xk)+/le(BJ! X, Xy ) = ﬁ(xk)_'_:uIQ(xl’Xk)

u' =1'B!

where I This means that the system (12) has solution. The converse is analogous.

Using this, lemmas 3.2 and 3.4, and the form of the coefficient matrix [or (X1 in lemma 3.1,

—_ 1 r D\ —
the proof that (12) has solution # = (4 8') ite P V?)=0 is easy and is left to the reader.
[l

Lemma 3.6. Consider the hypotheses in lemma 3.5. Then the solutions to

iyo=pB|V (13)

X =p"+ 2, (A4..., A7)

(if any) are precisely , where is a solution to (11). A solution to (13)

exists if and only if pNV?) = O' If @ is symplectic then (11) and (13) have a unique solution and

# ro— # - #0
if, in addition, B EV, then At :O, s A =0 gnd B coincides with X=(81V) defined by
(13).

- 1 r
Proof. Since Yi , J=1,.01 form a basis of V" we have that (4., 47) 1s a solution

j ay — IRV # iy —pt L aly
to (11 iff BHATIVI)Z0 o B Ay VT 1 B+ AN €V Nowitet X8 T4 Ghere

)

1 r
(4., 47) satisfies (11). Then we have X €V as we have just seen and we also have
o=@, Q)V =XV =(8+2y) V=5V,
since /1) =Lor generate V' . We have proven that X is a solution to (13). To prove that

every solution X to (13) can be written as before, we can reverse the previous argument. Using
this, it is clear that if @ is symplectic then (11) has unique solution, in particular, we have that

det(7j(Yi))¢0 ﬂ# eV then /I«JYj =X —,B# eV =1,...r

. If, in addition, . Since Yi, J is a basis
of V*° , using lemma 3.4 and the fact that vV =10}

we get that 2120 gop 15100t
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Corollary 3.7. Let A={1]|4 satisfies (11)} 7y, diMA =r —2s =dimker o

Proof. Ker@=V* which has dimension I =25 from corollary 3.3 and lemma 3.4. On the other
hand the dimension of the subspace of A satisfying (11) is clearly also _25, since the
coefficient matrix has rank 2S.

3.2 A Poisson-Algebraic and Geometric Study of the Primary and Final Constraint
Submanifolds

The Dirac algorithm, briefly explained in the previous subsection, can be applied to

(P,QQH,M) (P,Q3)

manifold, the primary constraint submanifold M is a given submanifold of P defined regularly

any given constrained Hamiltonian system where i1s a symplectic

by an equation $=0 and H is a Hamiltonian defined on P . This is because the particular
cotangent bundle structure of the symplectic manifold TQ 1s not essentially used in the Dirac
algorithm.

For instance, an interesting variant of the Dirac algorithm for a degenerate
Lagrangian system is the following. Consider the canonical symplectic manifold N=TTQ with

the canonical symplectic form €2, and let the primary constraint be M=TQ®TQ
embedded in N via the map given in local coordinates @v.p,v) of N by »(Q,v,p)=(q,v, p,O).
In particular, M is defined regularly by the equation V = 0. 1f @ is the presymplectic form on

, canonically

M obtained by pulling back the canonical symplectic form of T Q, then (pQ:a)_ This
embedding is globally defined (see Appendix for details).

(M, )

Remark. For a given presymplectic manifold one can always find an

(P.©) such that ¢ Q= @ Moreover, this embedding

can also be chosen such that it is coisotropic, meaning that M is a coisotropic submanifold of P
(see Gotay and Sniatycki [20]). However, we should mention that the embedding given above is
not coisotropic.

embedding # into a symplectic manifold

The number PV is a well-defined function on M and it can be naturally extended to

a function on a chart with coordinates (q,v,p,v)7 but this does not define a function on N
consistently. In any case, it can be extended to a smooth function on N and any such extension
will give the same equations of motion. The Dirac theory of constraints is essentially a local
theory. However, we will see a global version of the notion of Dirac bracket, in a sense, as well
as its local descriptions.

Consider the function E:M —>R given by E=pv _L(q’v). Using the fact that E

can be extended naturally on a chart with coordinates @v,p,v) and taking an appropriate

partition of unity we can choose once and for all an extension to a smooth function E on N
called the Energy. Then we can apply the Dirac algorithm to the constrained Hamiltonian

(N,Q.EM)

system
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There are some interesting features in this approach, as compared with the one

described in subsection 2.1, where the symplectic manifold is T'Q and the primary constraint
is the image of the Legendre transformation. For instance, the primary constraint

M=TQOTQ is well defined in a natural way as a closed submanifold of the symplectic
manifold N . Besides, the comparison with the Gotay-Nester approach becomes clear from the
beginning and the Euler-Lagrange equations are derived quickly as a differential-algebraic
equation (DAE). On the other hand, this approach may have the disadvantage of introducing
the extra variable V', which may lead to longer calculations in some examples.

(N,Q,E,M)

We shall start with the constrained Hamiltonian system , and we will

i=1,...r

i .
work locally, for simplicity. We will call ¢(°), 0, the primary constraints 4 defining

M, =

regularly by equations.

We will emphasize the Gotay-Nester point of view and we will see how it combines
with the Dirac procedure.

Accordingly, we shall study the Dirac dynamical system on the manifold

M=TQ®T Q , already considered in the example at the end of subsection 2.2 where the Dirac
structure is associated to a presymplectic form @ which is the pullback of the symplectic form

Q on N =TTQ via the inclusion MEN Then M is the primary constraint. Then the
equation to be solved, according to the Gotay-Nester algorithm, is the equation

o(X)(X,) =dEX)[T,M, (4

X eT,M, and

where xeM, , M

¢ being the final constraint. Let % be the pullback of Q via

the inclusion of M. in N . Since % is presymplectic, ker o, 1s an involutive distribution.
From now on we will assume the following.

ker o, has constant rank and defines a regular

M, =M, /K

Assumption Kl. The distribution

P ‘M, >M

foliation Ke , that is, the natural map "¢ ¢, where ¢ 1s a submersion.

Lemma 3.8. The following assertions hold:
) Yl < 0. =@
(a) There is a uniquely defined symplectic form @ on M. such that pKC ¢ ¢

<

(b) Let X be a given vector field on M. . Then there is a vector field X on "¢ that is

pKC -related to X .

(c) Let feF (Mc). Then there exists a vector field X on M. such that X is pKC -

_ w.(X)(X,)=d(p; f)(x
related to X , and for any such vector field X the equality ()X (pKC )09

XeMQ

holds for all
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. _ _
(d) Let ™ 0 °. Then one can choose the function FeF (M) and the vector

X(x,)=X
field X in (¢) in such a way that (%) %,

Proof. (a) By definition, the leaves of the foliation Ke are connected submanifolds of

-1 —
V4 X)=2
MC, that 1s, each pKC( ), zeM, let xeM, such that pKC( )

zeM,
ABeTM, T,p A=AT,p, B=B

, 1s connected. For

ABeM

Px . .
Fo as ¢ is a submersion, there are ¢ such that

We define % (@)(AB) = a, (X)(A B). To prove that this is a good definition observe first that it
is a consistent definition for fixed X, which is easy to prove, using the fact that

ker w_ (x) =kerT
:(X) XpKC . Now choose a Darboux chart centered at X, say UxV , such that, in this

‘UxV > U 1y2Yy = = (y! 1,2 — 1

chart, pKC and @ (X, X7) = &,(x7) @, (X, X%) @, (x°) are independent of

, where and

(Xl’xz). This shows that “ is well defined on the chart. Using this and the fact that one can
Pe. (2)

cover the connected submanifold with charts as explained above, one can deduce by a

simple argument that @,(2) is well defined.

XeM

(b) Let 9 be a Riemannian metric on M. . Then for each ¢ there is a uniquely

kerT T X (x) = X(x
determined X(x) eTM, such that X(X) P and Prg (x) (x) , for
all xeM; . This defines a vector field X on M. which is pKC -related to X .

1s orthogonal to

(c) Given f and using the result of (b) we see that there is a vector field X on M.

that is pKC -related to Xr . Then, for every xeM, and every Y €T,M;

b

0,()(X(X).Y,) = B, (p_ (X)X, (P, (.T,B, Y, ) = (B (T, Py Y,)
= d(p; DO,
(d) One can proceed as in (b) and (e¢) and choosing f  such that
(dF (py 06)) =T, Py X
kerT, pg_

X
© and, besides, the metric 9 such that ~ %0 is perpendicular to

(]

Definition 3.9. (a) For any subspace AcF(N) define the distribution A, TN by

AL ={X(X)|T € A}

(b) The space of first class functions is defined as

R ={f eF (N)| X;(x) eT,M_, for all x e M_}.

In other words, R® is the largest subset of F(N) satisfying
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AR(C) (X) =T M,
XxeM

Remark. (a) From the point of view of classical mechanics, the constraint
(0) (c)
submanifolds M and M. seem to be at least as important as the functions ¢ and ¢ (called

0) — c) —
constraints by Dirac) defining them by equations ¢'( '=0 and ¢'( = 0, respectively. Dirac was
interested in classical mechanics, where states are points in phase space, as well as in quantum
mechanics where functions are observables and states are not points in phase space. In the
present paper we focus mainly in classical mechanics, and therefore we need to concentrate on

the constraint submanifolds. In particular, M and M. are the only ones that play an important
role. The other secondary constraints submanifolds seem to be less important.

(b) The total Hamiltonian Hy 1s a first class function, by construction.
Lemma 3.10. (a) R is ¢ Poisson subalgebra of (F (N)’{’}).

R(C)

(b) M. is an integral submanifold of . Moreover, for any vector field X on M.

. P : X . :
that is ' ‘¢ -related to a vector field =t on M. there exists a function f eR® such that

fIM, =p; f -
M, pKC and X=X |M°. In particular, any vector field X on M. satisfyin,
Y ying
)f(x) cker o, (X) for all X eM. is pKC -related to the vector field 0 on the symplectic manifold

M. , which is associated to the function f :O, therefore there exists a function fe R(C), which

fIM, =0 X(x)=X;(x) xeM,

satisfies , such that

(c)
Proof. (a) Let f.geR . Then X (%) and Xg (x) are both tangent to M. at points
X{f’g}(x)z[xf,Xg](X) MC.

X of M. which implies that is also tangent to M. at points of X of

(c)
This shows that {f.g}eR . It 1s easy to see that any linear combination of f.9 and also fg
belong to R
. e A (c) gTMC . .
(b) By definition R . We need to show the converse inclusion. Let

X, T M

%o o' ¢ we need to find f eR© such that

X, (%)= X, - r
0. Choose the function and the

vector field X on M. as in lemma 3.8, (d). Choose any extension of o' toa function 9 on N

XxeM E=T,N V=T M, p:=dg(x)

—— (c) =
7i(X):=dd (X), ! _1""’r°. We obtain that in a neighborhood UcSN of each point Xo of M.
l(c)(x), ! :1""’r°, such that

. For each ¢, we can apply lemmas 3.5 and 3.6 with

00 .
we can choose C~ functions

#
’

X (%) =(dg(x) + A, (X)d g (x))
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- i (©)
for all X € M. AU . Let fu (X) g(x)+ﬁ(°)(x)¢= (X), for all X€U  Then we have that
X, (x)=X(x) xeM, NU

U , for all c .

Now, consider a partition of unity Pi , 1€l on N where each Pi is defined on an

open set Ui ,iel Let I <! be defined by the condition | €J if and only if UinM, =& Using
standard techniques of partitions of unity and the above result one can assume without loss of
. H J . . fU- . U. XfU (X) = X(X)
generality that for each ! €Y there is a function "' defined on ' such that i , for
L xeM AU, e

al , which can be naturally extended by 0 on N. Then it is easy

f (x)=p; f(x)=g(x _
to see, using the fact that Ui( ) pKC (x)=9( ), for each X € MC, that X(x) =X (X), for each
xeM XO=X(X0)=Xf(X0)' 0

¢, and in particular

Lemma 3.11. (a) Each function f € R s locally constant on the leaves of Ke

f eF(M,)

therefore, since they are connected, for each f eR® there is a uniquely determined

f fIM =p; f
called (pKC ). , such that IM. pKC . Moreover, the vector fields Xf(x), X< MC, on M. and
X M Pk

Fon "¢ are “c-related.

fIM, =p;

there exists f € R® such that ¢ and the vector

(b) For each FeF (M)
X (X) xeM, M X

- M Pk
on ¢ and T on ¢ are “c-related.

fields

Proof. (a) Let f eR® , we only need to show that f is constant on the leaves of Ke ,

df (x) | keraw.(x)=0 for all XxeM eM

v, eker a)C(X); then using lemma 3.10 (b) one sees that there is a function ge

Vi = Xg (X) Then we have

¢. For a given X c, let

R(C)

which is equivalent to showing that

such that

0=, (x)(X, (x), X, () = Q) (X, (), X, () = df (x) X, ().
M Y, eT,M,

Now we shall prove that X and X¢ are pKC _related. For each X €'V and each '

have

@, (X (X),Y,) = Q(X;(x),Y,) = df (x)(Y,) = d(picf_)(x)(Yx)-
Using this we obtain

@, ()X (9.Y,) = 3,()(p_ ()T, X, TPy Y, ) = of (B CNTPY,),
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Y

5 . . Tx pK X
, because ¢ is symplectic and ¢ ” represents

X; (e, () =T, P X, (X)

T M

. P (X)
an arbitrary element of ¢

which shows that

(b) To find f we choose a vector field X that is pKC -related to Xr according
tolemma 3.8 and then use 3.10, (b). O

Definition 3.12.
19 ={f eR® |f|M_=0},
ZI(C)R‘C) ={f eR“ |{f,h} el forallh e R®}.

Elements of 2 are called first class constraints.

Lemma 3.13. (a) 1) is o Poisson ideal of R(C), that is, it is an ideal of the 