2,445 research outputs found

    A direct N-body model of core-collapse and core oscillations

    Full text link
    We report on the results of a direct N-body simulation of a star cluster that started with N = 200 000, comprising 195 000 single stars and 5 000 primordial binaries. The code used for the simulation includes stellar evolution, binary evolution, an external tidal field and the effects of two-body relaxation. The model cluster is evolved to 12 Gyr, losing more than 80% of its stars in the process. It reaches the end of the main core-collapse phase at 10.5 Gyr and experiences core oscillations from that point onwards -- direct numerical confirmation of this phenomenon. However, we find that after a further 1 Gyr the core oscillations are halted by the ejection of a massive binary comprised of two black holes from the core, producing a core that shows no signature of the prior core-collapse. We also show that the results of previous studies with N ranging from 500 to 100 000 scale well to this new model with larger N. In particular, the timescale to core-collapse (in units of the relaxation timescale), mass segregation, velocity dispersion, and the energies of the binary population all show similar behaviour at different N.Comment: 9 pages, 8 figures, accepted for publication in MNRA

    Four-point function in general kinematics through geometrical splitting and reduction

    Full text link
    It is shown how the geometrical splitting of N-point Feynman diagrams can be used to simplify the parametric integrals and reduce the number of variables in the occurring functions. As an example, a calculation of the dimensionally-regulated one-loop four-point function in general kinematics is presented.Comment: 8 pages, 9 figures, contribution for proceedings of ACAT 2017 (Seattle, USA, August 21-25, 2017). arXiv admin note: substantial text overlap with arXiv:1605.0482

    The baseline intracluster entropy profile from gravitational structure formation

    Full text link
    The radial entropy profile of the hot gas in clusters of galaxies tends to follow a power law in radius outside of the cluster core. Here we present a simple formula giving both the normalization and slope for the power-law entropy profiles of clusters that form in the absence of non-gravitational processes such as radiative cooling and subsequent feedback. It is based on seventy-one clusters drawn from four separate cosmological simulations, two using smoothed-particle hydrodynamics (SPH) and two using adaptive-mesh refinement (AMR), and can be used as a baseline for assessing the impact of non-gravitational processes on the intracluster medium outside of cluster cores. All the simulations produce clusters with self-similar structure in which the normalization of the entropy profile scales linearly with cluster temperature, and these profiles are in excellent agreement outside of 0.2 r_200. Because the observed entropy profiles of clusters do not scale linearly with temperature, our models confirm that non-gravitational processes are necessary to break the self-similarity seen in the simulations. However, the core entropy levels found by the two codes used here significantly differ, with the AMR code producing nearly twice as much entropy at the centre of a cluster.Comment: Accepted to MNRAS, 8 pages, 9 figure

    Tunable Double Negative Band Structure from Non-Magnetic Coated Rods

    Full text link
    A system of periodic poly-disperse coated nano-rods is considered. Both the coated nano-rods and host material are non-magnetic. The exterior nano-coating has a frequency dependent dielectric constant and the rod has a high dielectric constant. A negative effective magnetic permeability is generated near the Mie resonances of the rods while the coating generates a negative permittivity through a field resonance controlled by the plasma frequency of the coating and the geometry of the crystal. The explicit band structure for the system is calculated in the sub-wavelength limit. Tunable pass bands exhibiting negative group velocity are generated and correspond to simultaneously negative effective dielectric permittivity and magnetic permeability. These can be explicitly controlled by adjusting the distance between rods, the coating thickness, and rod diameters

    Butterfly Tachyons in Vacuum String Field Theory

    Get PDF
    We use geometrical conformal field theory methods to investigate tachyon fluctuations about the butterfly projector state in Vacuum String Field Theory. We find that the on-shell condition for the tachyon field is equivalent to the requirement that the quadratic term in the string-field action vanish on shell. This further motivates the interpretation of the butterfly state as a D-brane. We begin a calculation of the tension of the butterfly, and conjecture that this will match the case of the sliver and further strengthen this interpretation.Comment: 14 pages, 6 figures, revte

    Power-law spin correlations in pyrochlore antiferromagnets

    Full text link
    The ground state ensemble of the highly frustrated pyrochlore-lattice antiferromagnet can be mapped to a coarse-grained ``polarization'' field satisfying a zero-divergence condition From this it follows that the correlations of this field, as well as the actual spin correlations, decay with separation like a dipole-dipole interaction (1/R31/|R|^3). Furthermore, a lattice version of the derivation gives an approximate formula for spin correlations, with several features that agree well with simulations and neutron-diffraction measurements of diffuse scattering, in particular the pinch-point (pseudo-dipolar) singularities at reciprocal lattice vectors. This system is compared to others in which constraints also imply diffraction singularities, and other possible applications of the coarse-grained polarization are discussed.Comment: 13 pp, revtex, two figure
    corecore