24,132 research outputs found

    Reducing the Time Requirement of k-Means Algorithm

    Get PDF
    Traditional k-means and most k-means variants are still computationally expensive for large datasets, such as microarray data, which have large datasets with large dimension size d. In k-means clustering, we are given a set of n data points in ddimensional space Rd and an integer k. The problem is to determine a set of k points in Rd, called centers, so as to minimize the mean squared distance from each data point to its nearest center. In this work, we develop a novel k-means algorithm, which is simple but more efficient than the traditional k-means and the recent enhanced k-means. Our new algorithm is based on the recently established relationship between principal component analysis and the k-means clustering. We provided the correctness proof for this algorithm. Results obtained from testing the algorithm on three biological data and six non-biological data (three of these data are real, while the other three are simulated) also indicate that our algorithm is empirically faster than other known k-means algorithms. We assessed the quality of our algorithm clusters against the clusters of a known structure using the Hubert-Arabie Adjusted Rand index (ARIHA). We found that when k is close to d, the quality is good (ARIHA.0.8) and when k is not close to d, the quality of our new k-means algorithm is excellent (ARIHA.0.9). In this paper, emphases are on the reduction of the time requirement of the k-means algorithm and its application to microarray data due to the desire to create a tool for clustering and malaria research. However, the new clustering algorithm can be used for other clustering needs as long as an appropriate measure of distance between the centroids and the members is used. This has been demonstrated in this work on six non-biological data

    Study of document clustering using the k-means algorithm

    Full text link
    One of the most commonly used data mining techniques is document clustering or unsupervised document classification which deals with the grouping of documents based on some document similarity function; This thesis deals with research issues associated with categorizing documents using the k-means clustering algorithm which groups objects into K number of groups based on document representations and similarities; The proposed hypothesis of this thesis is to prove that unsupervised clustering of a set of documents produces similar results to that of their supervised categorization

    A Faster kk-means++ Algorithm

    Full text link
    K-means++ is an important algorithm to choose initial cluster centers for the k-means clustering algorithm. In this work, we present a new algorithm that can solve the kk-means++ problem with near optimal running time. Given nn data points in Rd\mathbb{R}^d, the current state-of-the-art algorithm runs in O~(k)\widetilde{O}(k ) iterations, and each iteration takes O~(ndk)\widetilde{O}(nd k) time. The overall running time is thus O~(ndk2)\widetilde{O}(n d k^2). We propose a new algorithm \textsc{FastKmeans++} that only takes in O~(nd+nk2)\widetilde{O}(nd + nk^2) time, in total

    Color image segmentation using a spatial k-means clustering algorithm

    Get PDF
    This paper details the implementation of a new adaptive technique for color-texture segmentation that is a generalization of the standard K-Means algorithm. The standard K-Means algorithm produces accurate segmentation results only when applied to images defined by homogenous regions with respect to texture and color since no local constraints are applied to impose spatial continuity. In addition, the initialization of the K-Means algorithm is problematic and usually the initial cluster centers are randomly picked. In this paper we detail the implementation of a novel technique to select the dominant colors from the input image using the information from the color histograms. The main contribution of this work is the generalization of the K-Means algorithm that includes the primary features that describe the color smoothness and texture complexity in the process of pixel assignment. The resulting color segmentation scheme has been applied to a large number of natural images and the experimental data indicates the robustness of the new developed segmentation algorithm
    corecore