2 research outputs found

    Signal Processing of Multimodal Mobile Lifelogging Data towards Detecting Stress in Real-World Driving

    Get PDF
    Stress is a negative emotion that is part of everyday life. However, frequent episodes or prolonged periods of stress can be detrimental to long-term health. Nevertheless, developing self-awareness is an important aspect of fostering effective ways to self-regulate these experiences. Mobile lifelogging systems provide an ideal platform to support self-regulation of stress by raising awareness of negative emotional states via continuous recording of psychophysiological and behavioural data. However, obtaining meaningful information from large volumes of raw data represents a significant challenge because these data must be accurately quantified and processed before stress can be detected. This work describes a set of algorithms designed to process multiple streams of lifelogging data for stress detection in the context of real world driving. Two data collection exercises have been performed where multimodal data, including raw cardiovascular activity and driving information, were collected from twenty-one people during daily commuter journeys. Our approach enabled us to 1) pre-process raw physiological data to calculate valid measures of heart rate variability, a significant marker of stress, 2) identify/correct artefacts in the raw physiological data and 3) provide a comparison between several classifiers for detecting stress. Results were positive and ensemble classification models provided a maximum accuracy of 86.9% for binary detection of stress in the real-world

    Effects of missing data on heart rate variability metrics

    Get PDF
    Heart rate variability (HRV) has been studied for decades in clinical environments. Currently, the exponential growth of wearable devices in health monitoring is leading to new challenges that need to be solved. These devices have relatively poor signal quality and are affected by numerous motion artifacts, with data loss being the main stumbling block for their use in HRV analysis. In the present paper, it is shown how data loss affects HRV metrics in the time domain and frequency domain and Poincaré plots. A gap-filling method is proposed and compared to other existing approaches to alleviate these effects, both with simulated (16 subjects) and real (20 subjects) missing data. Two different data loss scenarios have been simulated: (i) scattered missing beats, related to a low signal to noise ratio; and (ii) bursts of missing beats, with the most common due to motion artifacts. In addition, a real database of photoplethysmography-derived pulse detection series provided by Apple Watch during a protocol including relax and stress stages is analyzed. The best correction method and maximum acceptable missing beats are given. Results suggest that correction without gap filling is the best option for the standard deviation of the normal-to-normal intervals (SDNN), root mean square of successive differences (RMSSD) and Poincaré plot metrics in datasets with bursts of missing beats predominance (p<0.05), whereas they benefit from gap-filling approaches in the case of scattered missing beats (p<0.05). Gap-filling approaches are also the best for frequency-domain metrics (p<0.05). The findings of this work are useful for the design of robust HRV applications depending on missing data tolerance and the desired HRV metrics
    corecore