52,197 research outputs found

    A nonmonotone GRASP

    Get PDF
    A greedy randomized adaptive search procedure (GRASP) is an itera- tive multistart metaheuristic for difficult combinatorial optimization problems. Each GRASP iteration consists of two phases: a construction phase, in which a feasible solution is produced, and a local search phase, in which a local optimum in the neighborhood of the constructed solution is sought. Repeated applications of the con- struction procedure yields different starting solutions for the local search and the best overall solution is kept as the result. The GRASP local search applies iterative improvement until a locally optimal solution is found. During this phase, starting from the current solution an improving neighbor solution is accepted and considered as the new current solution. In this paper, we propose a variant of the GRASP framework that uses a new “nonmonotone” strategy to explore the neighborhood of the current solu- tion. We formally state the convergence of the nonmonotone local search to a locally optimal solution and illustrate the effectiveness of the resulting Nonmonotone GRASP on three classical hard combinatorial optimization problems: the maximum cut prob- lem (MAX-CUT), the weighted maximum satisfiability problem (MAX-SAT), and the quadratic assignment problem (QAP)

    The edge-disjoint path problem on random graphs by message-passing

    Get PDF
    We present a message-passing algorithm to solve the edge disjoint path problem (EDP) on graphs incorporating under a unique framework both traffic optimization and path length minimization. The min-sum equations for this problem present an exponential computational cost in the number of paths. To overcome this obstacle we propose an efficient implementation by mapping the equations onto a weighted combinatorial matching problem over an auxiliary graph. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behaviour of both the number of paths to be accommodated and their minimum total length.Comment: 14 pages, 8 figure

    Structured Sparsity: Discrete and Convex approaches

    Full text link
    Compressive sensing (CS) exploits sparsity to recover sparse or compressible signals from dimensionality reducing, non-adaptive sensing mechanisms. Sparsity is also used to enhance interpretability in machine learning and statistics applications: While the ambient dimension is vast in modern data analysis problems, the relevant information therein typically resides in a much lower dimensional space. However, many solutions proposed nowadays do not leverage the true underlying structure. Recent results in CS extend the simple sparsity idea to more sophisticated {\em structured} sparsity models, which describe the interdependency between the nonzero components of a signal, allowing to increase the interpretability of the results and lead to better recovery performance. In order to better understand the impact of structured sparsity, in this chapter we analyze the connections between the discrete models and their convex relaxations, highlighting their relative advantages. We start with the general group sparse model and then elaborate on two important special cases: the dispersive and the hierarchical models. For each, we present the models in their discrete nature, discuss how to solve the ensuing discrete problems and then describe convex relaxations. We also consider more general structures as defined by set functions and present their convex proxies. Further, we discuss efficient optimization solutions for structured sparsity problems and illustrate structured sparsity in action via three applications.Comment: 30 pages, 18 figure

    Geometric Reasoning with polymake

    Full text link
    The mathematical software system polymake provides a wide range of functions for convex polytopes, simplicial complexes, and other objects. A large part of this paper is dedicated to a tutorial which exemplifies the usage. Later sections include a survey of research results obtained with the help of polymake so far and a short description of the technical background
    • …
    corecore