2,876 research outputs found

    The University of Glasgow at ImageClefPhoto 2009

    Get PDF
    In this paper we describe the approaches adopted to generate the five runs submitted to ImageClefPhoto 2009 by the University of Glasgow. The aim of our methods is to exploit document diversity in the rankings. All our runs used text statistics extracted from the captions associated to each image in the collection, except one run which combines the textual statistics with visual features extracted from the provided images. The results suggest that our methods based on text captions significantly improve the performance of the respective baselines, while the approach that combines visual features with text statistics shows lower levels of improvements

    DeeSIL: Deep-Shallow Incremental Learning

    Full text link
    Incremental Learning (IL) is an interesting AI problem when the algorithm is assumed to work on a budget. This is especially true when IL is modeled using a deep learning approach, where two com- plex challenges arise due to limited memory, which induces catastrophic forgetting and delays related to the retraining needed in order to incorpo- rate new classes. Here we introduce DeeSIL, an adaptation of a known transfer learning scheme that combines a fixed deep representation used as feature extractor and learning independent shallow classifiers to in- crease recognition capacity. This scheme tackles the two aforementioned challenges since it works well with a limited memory budget and each new concept can be added within a minute. Moreover, since no deep re- training is needed when the model is incremented, DeeSIL can integrate larger amounts of initial data that provide more transferable features. Performance is evaluated on ImageNet LSVRC 2012 against three state of the art algorithms. Results show that, at scale, DeeSIL performance is 23 and 33 points higher than the best baseline when using the same and more initial data respectively

    Skill Determination from Long Videos

    Get PDF

    UPC-UB-STP @ MediaEval 2015 diversity task: iterative reranking of relevant images

    Get PDF
    This paper presents the results of the UPC-UB-STP team in the 2015 MediaEval Retrieving Diverse Images Task.The goal of the challenge is to provide a ranked list of Flickr photos for a predefined set of queries. Our approach firstly generates a ranking of images based on a query-independent estimation of its relevance. Only top results are kept and iteratively re-ranked based on their intra-similarity to introduce diversity.Postprint (published version

    Deep Learning and Music Adversaries

    Get PDF
    OA Monitor ExerciseOA Monitor ExerciseAn {\em adversary} is essentially an algorithm intent on making a classification system perform in some particular way given an input, e.g., increase the probability of a false negative. Recent work builds adversaries for deep learning systems applied to image object recognition, which exploits the parameters of the system to find the minimal perturbation of the input image such that the network misclassifies it with high confidence. We adapt this approach to construct and deploy an adversary of deep learning systems applied to music content analysis. In our case, however, the input to the systems is magnitude spectral frames, which requires special care in order to produce valid input audio signals from network-derived perturbations. For two different train-test partitionings of two benchmark datasets, and two different deep architectures, we find that this adversary is very effective in defeating the resulting systems. We find the convolutional networks are more robust, however, compared with systems based on a majority vote over individually classified audio frames. Furthermore, we integrate the adversary into the training of new deep systems, but do not find that this improves their resilience against the same adversary

    Random forests with random projections of the output space for high dimensional multi-label classification

    Full text link
    We adapt the idea of random projections applied to the output space, so as to enhance tree-based ensemble methods in the context of multi-label classification. We show how learning time complexity can be reduced without affecting computational complexity and accuracy of predictions. We also show that random output space projections may be used in order to reach different bias-variance tradeoffs, over a broad panel of benchmark problems, and that this may lead to improved accuracy while reducing significantly the computational burden of the learning stage

    A ranking framework and evaluation for diversity-based retrieval

    Get PDF
    There has been growing momentum in building information retrieval (IR) systems that consider both relevance and diversity of retrieved information, which together improve the usefulness of search results as perceived by users. Some users may genuinely require a set of multiple results to satisfy their information need as there is no single result that completely fulfils the need. Others may be uncertain about their information need and they may submit ambiguous or broad (faceted) queries, either intentionally or unintentionally. A sensible approach to tackle these problems is to diversify search results to address all possible senses underlying those queries or all possible answers satisfying the information need. In this thesis, we explore three aspects of diversity-based document retrieval: 1) recommender systems, 2) retrieval algorithms, and 3) evaluation measures. This first goal of this thesis is to provide an understanding of the need for diversity in search results from the users’ perspective. We develop an interactive recommender system for the purpose of a user study. Designed to facilitate users engaged in exploratory search, the system is featured with content-based browsing, aspectual interfaces, and diverse recommendations. While the diverse recommendations allow users to discover more and different aspects of a search topic, the aspectual interfaces allow users to manage and structure their own search process and results regarding aspects found during browsing. The recommendation feature mines implicit relevance feedback information extracted from a user’s browsing trails and diversifies recommended results with respect to document contents. The result of our user-centred experiment shows that result diversity is needed in realistic retrieval scenarios. Next, we propose a new ranking framework for promoting diversity in a ranked list. We combine two distinct result diversification patterns; this leads to a general framework that enables the development of a variety of ranking algorithms for diversifying documents. To validate our proposal and to gain more insights into approaches for diversifying documents, we empirically compare our integration framework against a common ranking approach (i.e. the probability ranking principle) as well as several diversity-based ranking strategies. These include maximal marginal relevance, modern portfolio theory, and sub-topic-aware diversification based on sub-topic modelling techniques, e.g. clustering, latent Dirichlet allocation, and probabilistic latent semantic analysis. Our findings show that the two diversification patterns can be employed together to improve the effectiveness of ranking diversification. Furthermore, we find that the effectiveness of our framework mainly depends on the effectiveness of the underlying sub-topic modelling techniques. Finally, we examine evaluation measures for diversity retrieval. We analytically identify an issue affecting the de-facto standard measure, novelty-biased discounted cumulative gain (α-nDCG). This issue prevents the measure from behaving as desired, i.e. assessing the effectiveness of systems that provide complete coverage of sub-topics by avoiding excessive redundancy. We show that this issue is of importance as it highly affects the evaluation of retrieval systems, specifically by overrating top-ranked systems that repeatedly retrieve redundant information. To overcome this issue, we derive a theoretically sound solution by defining a safe threshold on a query-basis. We examine the impact of arbitrary settings of the α-nDCG parameter. We evaluate the intuitiveness and reliability of α-nDCG when using our proposed setting on both real and synthetic rankings. We demonstrate that the diversity of document rankings can be intuitively measured by employing the safe threshold. Moreover, our proposal does not harm, but instead increases the reliability of the measure in terms of discriminative power, stability, and sensitivity
    • …
    corecore