12 research outputs found

    Imitative Planning using Conditional Normalizing Flow

    Full text link
    We explore the application of normalizing flows for improving the performance of trajectory planning for autonomous vehicles (AVs). Normalizing flows provide an invertible mapping from a known prior distribution to a potentially complex, multi-modal target distribution and allow for fast sampling with exact PDF inference. By modeling a trajectory planner's cost manifold as an energy function we learn a scene conditioned mapping from the prior to a Boltzmann distribution over the AV control space. This mapping allows for control samples and their associated energy to be generated jointly and in parallel. We propose using neural autoregressive flow (NAF) as part of an end-to-end deep learned system that allows for utilizing sensors, map, and route information to condition the flow mapping. Finally, we demonstrate the effectiveness of our approach on real world datasets over IL and hand constructed trajectory sampling techniques.Comment: Submittted to 4th Conference on Robot Learning (CoRL 2020), Cambridge MA, US

    Interpretable Motion Planner for Urban Driving via Hierarchical Imitation Learning

    Full text link
    Learning-based approaches have achieved remarkable performance in the domain of autonomous driving. Leveraging the impressive ability of neural networks and large amounts of human driving data, complex patterns and rules of driving behavior can be encoded as a model to benefit the autonomous driving system. Besides, an increasing number of data-driven works have been studied in the decision-making and motion planning module. However, the reliability and the stability of the neural network is still full of uncertainty. In this paper, we introduce a hierarchical planning architecture including a high-level grid-based behavior planner and a low-level trajectory planner, which is highly interpretable and controllable. As the high-level planner is responsible for finding a consistent route, the low-level planner generates a feasible trajectory. We evaluate our method both in closed-loop simulation and real world driving, and demonstrate the neural network planner has outstanding performance in complex urban autonomous driving scenarios.Comment: 6 pages, 8 figures, accepted by IROS202
    corecore