1,414 research outputs found

    Final report on the evaluation of RRM/CRRM algorithms

    Get PDF
    Deliverable public del projecte EVERESTThis deliverable provides a definition and a complete evaluation of the RRM/CRRM algorithms selected in D11 and D15, and evolved and refined on an iterative process. The evaluation will be carried out by means of simulations using the simulators provided at D07, and D14.Preprin

    On channel-adaptive multiple burst admission control for mobile computing based on wideband CDMA

    Get PDF
    Mobile computing systems built using third generation wireless standards are mostly based on the wideband CDMA platform to support high bit rate packet data services. One important component offering packet data service in CDMA is a burst admission control algorithm. We formulate the multiple-burst admission control problem as an integer programming problem, which induces our novel jointly adaptive burst admission algorithm, called the jointly adaptive burst admission-spatial dimension algorithm (JABA-SD), which is designed to effectively allocate valuable resources in wideband CDMA systems to burst requests. Both the forward link and the reverse link burst requests are considered and the system is evaluated by dynamic simulations which takes into account user mobility, power control, and soft hand-off.published_or_final_versio

    Radio resource management and metric estimation for multicarrier CDMA systems

    Get PDF

    Unified clustering and communication protocol for wireless sensor networks

    Get PDF
    In this paper we present an energy-efficient cross layer protocol for providing application specific reservations in wireless senor networks called the “Unified Clustering and Communication Protocol ” (UCCP). Our modular cross layered framework satisfies three wireless sensor network requirements, namely, the QoS requirement of heterogeneous applications, energy aware clustering and data forwarding by relay sensor nodes. Our unified design approach is motivated by providing an integrated and viable solution for self organization and end-to-end communication is wireless sensor networks. Dynamic QoS based reservation guarantees are provided using a reservation-based TDMA approach. Our novel energy-efficient clustering approach employs a multi-objective optimization technique based on OR (operations research) practices. We adopt a simple hierarchy in which relay nodes forward data messages from cluster head to the sink, thus eliminating the overheads needed to maintain a routing protocol. Simulation results demonstrate that UCCP provides an energy-efficient and scalable solution to meet the application specific QoS demands in resource constrained sensor nodes. Index Terms — wireless sensor networks, unified communication, optimization, clustering and quality of service

    A survey of self organisation in future cellular networks

    Get PDF
    This article surveys the literature over the period of the last decade on the emerging field of self organisation as applied to wireless cellular communication networks. Self organisation has been extensively studied and applied in adhoc networks, wireless sensor networks and autonomic computer networks; however in the context of wireless cellular networks, this is the first attempt to put in perspective the various efforts in form of a tutorial/survey. We provide a comprehensive survey of the existing literature, projects and standards in self organising cellular networks. Additionally, we also aim to present a clear understanding of this active research area, identifying a clear taxonomy and guidelines for design of self organising mechanisms. We compare strength and weakness of existing solutions and highlight the key research areas for further development. This paper serves as a guide and a starting point for anyone willing to delve into research on self organisation in wireless cellular communication networks

    Fading-aware packet scheduling algorithm in OFDM-MIMO systems

    Get PDF
    To maximize system throughput and guarantee the quality of service(QoS) of multimedia traffic in orthogonal frequency division multiplexing(OFDM) systems with smart antennas, a new packet scheduler is introduced to consider QoS requirements, packet location in the frame, and modulation level. In the frequency domain, several consecutive subchannels are grouped as a frequency subband. Each subband in a frame can be used to transmit a packet, and can be reused by several users in a multiple-input and multiple-output (MIMO) systems. In this paper, we consider the adaptive packet scheduling algorithms design for OFDM/SDMA system.Based on the BER requirements, all traffics are divided into classes.Based on such classification, a dynamic packet scheduler is proposed,which greatly improves system capacity, and can guarantee QoS requirements.Adaptive modulation is also applied in the scheduler. Then, the complexity analysis of these algorithms is given. When compared with existing schedulers, our scheduler achieves higher system capacity with much reduced complexity. The use of adaptive modulation further enhances the system capacity. Simulation results demonstrate that as the traffic load increases, the new scheduler has much better performance in system throughput, average delay, and packet loss rate.published_or_final_versio

    Resource management in QoS-aware wireless cellular networks

    Get PDF
    2011 Summer.Includes bibliographical references.Emerging broadband wireless networks that support high speed packet data with heterogeneous quality of service (QoS) requirements demand more flexible and efficient use of the scarce spectral resource. Opportunistic scheduling exploits the time-varying, location-dependent channel conditions to achieve multiuser diversity. In this work, we study two types of resource allocation problems in QoS-aware wireless cellular networks. First, we develop a rigorous framework to study opportunistic scheduling in multiuser OFDM systems. We derive optimal opportunistic scheduling policies under three common QoS/fairness constraints for multiuser OFDM systems--temporal fairness, utilitarian fairness, and minimum-performance guarantees. To implement these optimal policies efficiently, we provide a modified Hungarian algorithm and a simple suboptimal algorithm. We then propose a generalized opportunistic scheduling framework that incorporates multiple mixed QoS/fairness constraints, including providing both lower and upper bound constraints. Next, taking input queues and channel memory into consideration, we reformulate the transmission scheduling problem as a new class of Markov decision processes (MDPs) with fairness constraints. We investigate the throughput maximization and the delay minimization problems in this context. We study two categories of fairness constraints, namely temporal fairness and utilitarian fairness. We consider two criteria: infinite horizon expected total discounted reward and expected average reward. We derive and prove explicit dynamic programming equations for the above constrained MDPs, and characterize optimal scheduling policies based on those equations. An attractive feature of our proposed schemes is that they can easily be extended to fit different objective functions and other fairness measures. Although we only focus on uplink scheduling, the scheme is equally applicable to the downlink case. Furthermore, we develop an efficient approximation method--temporal fair rollout--to reduce the computational cost
    • 

    corecore