4,247 research outputs found

    Joint Covariance Estimation with Mutual Linear Structure

    Full text link
    We consider the problem of joint estimation of structured covariance matrices. Assuming the structure is unknown, estimation is achieved using heterogeneous training sets. Namely, given groups of measurements coming from centered populations with different covariances, our aim is to determine the mutual structure of these covariance matrices and estimate them. Supposing that the covariances span a low dimensional affine subspace in the space of symmetric matrices, we develop a new efficient algorithm discovering the structure and using it to improve the estimation. Our technique is based on the application of principal component analysis in the matrix space. We also derive an upper performance bound of the proposed algorithm in the Gaussian scenario and compare it with the Cramer-Rao lower bound. Numerical simulations are presented to illustrate the performance benefits of the proposed method

    Sparse causality network retrieval from short time series

    Get PDF
    We investigate how efficiently a known underlying sparse causality structure of a simulated multivariate linear process can be retrieved from the analysis of time series of short lengths. Causality is quantified from conditional transfer entropy and the network is constructed by retaining only the statistically validated contributions. We compare results from three methodologies: two commonly used regularization methods, Glasso and ridge, and a newly introduced technique, LoGo, based on the combination of information filtering network and graphical modelling. For these three methodologies we explore the regions of time series lengths and model-parameters where a significant fraction of true causality links is retrieved. We conclude that when time series are short, with their lengths shorter than the number of variables, sparse models are better suited to uncover true causality links with LoGo retrieving the true causality network more accurately than Glasso and ridge

    Information capacity in the weak-signal approximation

    Full text link
    We derive an approximate expression for mutual information in a broad class of discrete-time stationary channels with continuous input, under the constraint of vanishing input amplitude or power. The approximation describes the input by its covariance matrix, while the channel properties are described by the Fisher information matrix. This separation of input and channel properties allows us to analyze the optimality conditions in a convenient way. We show that input correlations in memoryless channels do not affect channel capacity since their effect decreases fast with vanishing input amplitude or power. On the other hand, for channels with memory, properly matching the input covariances to the dependence structure of the noise may lead to almost noiseless information transfer, even for intermediate values of the noise correlations. Since many model systems described in mathematical neuroscience and biophysics operate in the high noise regime and weak-signal conditions, we believe, that the described results are of potential interest also to researchers in these areas.Comment: 11 pages, 4 figures; accepted for publication in Physical Review

    Importance Sampling: Intrinsic Dimension and Computational Cost

    Get PDF
    The basic idea of importance sampling is to use independent samples from a proposal measure in order to approximate expectations with respect to a target measure. It is key to understand how many samples are required in order to guarantee accurate approximations. Intuitively, some notion of distance between the target and the proposal should determine the computational cost of the method. A major challenge is to quantify this distance in terms of parameters or statistics that are pertinent for the practitioner. The subject has attracted substantial interest from within a variety of communities. The objective of this paper is to overview and unify the resulting literature by creating an overarching framework. A general theory is presented, with a focus on the use of importance sampling in Bayesian inverse problems and filtering.Comment: Statistical Scienc

    Credit Risk Meets Random Matrices: Coping with Non-Stationary Asset Correlations

    Full text link
    We review recent progress in modeling credit risk for correlated assets. We start from the Merton model which default events and losses are derived from the asset values at maturity. To estimate the time development of the asset values, the stock prices are used whose correlations have a strong impact on the loss distribution, particularly on its tails. These correlations are non-stationary which also influences the tails. We account for the asset fluctuations by averaging over an ensemble of random matrices that models the truly existing set of measured correlation matrices. As a most welcome side effect, this approach drastically reduces the parameter dependence of the loss distribution, allowing us to obtain very explicit results which show quantitatively that the heavy tails prevail over diversification benefits even for small correlations. We calibrate our random matrix model with market data and show how it is capable of grasping different market situations. Furthermore, we present numerical simulations for concurrent portfolio risks, i.e., for the joint probability densities of losses for two portfolios. For the convenience of the reader, we give an introduction to the Wishart random matrix model.Comment: Review of a new random matrix approach to credit ris
    corecore