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Abstract. We examine whether the information in cap and swaption prices is consistent with realized movements
of the interest rate term structure. To extract an option-implied interest rate covariance matrix from cap and
swaption prices, we use Libor market models as a modelling framework. We propose a flexible parameterization
of the interest rate covariance matrix, which cannot be generated by standard low-factor term structure models.
The empirical analysis, based on US data from 1995 to 1999, shows that option prices imply an interest rate
covariance matrix that is significantly different from the covariance matrix estimated from interest rate data. If
one uses the latter covariance matrix to price caps and swaptions, one significantly underprices these options. We
discuss and analyze several explanations for our findings.
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One of the central questions in option pricing is whether the information reflected in op-
tion prices is consistent with the time series behavior of the underlying security. One set
of articles in this field focuses on analyzing whether implied volatility is an efficient and
unbiased predictor of realized volatility (Amin and Ng, 1997; Canina and Figlewski, 1993;
Christensen and Prabhala, 1998). Another series of articles compares the risk-neutral den-
sity implied by option prices with the density estimated using time series data on the un-
derlying security (Ait-Sahalia, Wang, and Yared, 2001; Jackwerth and Rubinstein, 1996).
In general, the conclusion is that there are significant differences between the time series
behavior of the underlying security and the cross section information in option prices.

All these articles focus on the case where there is one underlying security, typically a
stock, futures price, or currency rate. We contribute to this literature by analyzing the
interest rate option market, specifically, the market for caps and swaptions. This market
is one of the largest OTC option markets. In contrast to the equity and currency option
markets, there are many underlying securities in the interest rate option market (swaps and
bonds of different maturities) which are strongly interrelated. In addition to the volatility
of interest rates, their mutual correlations are crucial for derivative prices (as noted by, for
example, Rebonato (1996)). Our focus is thus the covariance matrix of interest rates of
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different maturities. The goal of this paper is to examine what cap and swaption prices
imply regarding the covariance matrix of interest rate changes of different maturities, and,
second, whether these option price implications are consistent with the covariance matrix
estimated from the time series of interest rates.

To “invert” cap and swaption prices to option-implied interest rate variances and cor-
relations, we use the Libor market models (Brace, Gatarek, and Musiela, 1997; Mil-
tersen, Sandmann, and Sondermann, 1997; Jamshidian, 1997), which are equivalent to
the discrete-tenor case of the string term structure models (Longstaff, Santa-Clara, and
Schwartz, 2001; Santa-Clara and Sornette, 2001). This framework implies that forward
Libor rates of different forward maturities have a joint lognormal distribution.

An important aspect of this analysis is the parameterization of the interest rate covari-
ance matrix associated with the joint lognormal distribution. In line with Rebonato (1996),
we show that standard low-factor term structure models do not generate satisfactory shapes
for the correlation structure of interest rates of different maturities. Therefore, we avoid
imposing a factor structure on the model, and use a full-factor model. We directly parame-
terize the covariance matrix of this full-factor model using a flexible specification.

Next, based on this model specification, we derive moment conditions that interest rate
data and option price data should satisfy. These moment restrictions involve variances
and covariances of forward Libor rate changes of different maturities, as well as average
cap and swaption prices. We use the Generalized Method of Moments (Hansen, 1982) for
estimation and testing, and allow for the presence of measurement error in the cap and
swaption prices. The moment restrictions are estimated using weekly US data on Libor
and swap rates and prices of caps and swaptions from 1995 until 1999.

We compare the information in option prices and interest rates in two ways. First, we
estimate the parameters in the covariance matrix specification using interest rate data only
(“historical estimation”), and analyze the implications for cap and swaption prices. This
leads to cap and swaption prices that are, on average, significantly lower than the observed
prices. A test on the joint pricing restrictions for caps and swaptions strongly rejects that
caps and swaptions are priced consistently with the historical interest rate covariance ma-
trix.

Second, we estimate the interest rate covariance matrix using cap and swaption data only,
and compare this option-implied covariance matrix to the historically estimated covariance
matrix. The results show that the option-implied interest rate volatility term structure is
hump shaped, which is in line with the shape of the historically estimated volatility term
structure. However, the option-implied hump is higher and steeper than the historically
estimated hump. Furthermore, the option-implied interest rate correlations are much lower
than the realized (historically estimated) interest rate correlations for short maturities, and
higher for longer maturities. We also statistically test whether the option-implied covari-
ance matrix is equal to the historically estimated covariance matrix. The test results show
a rejection of these restrictions.

We analyze and reject two explanations for our results: (i) the high option prices during
the Russia/LTCM crisis, and (ii) the presence of measurement error in the forward Libor
rates. In addition, our results are robust to an alternative specification of the forward Libor
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rate probability distribution. We discuss other potential explanations in the final section of
the paper.

Our paper is related to Longstaff, Santa-Clara, and Schwartz (LSS, 2001), who use
a two-step estimation procedure to estimate a four-factor model for caps and swaptions.
They extract eigenvectors from a historically estimated correlation matrix, and subse-
quently the eigenvalues are calibrated to swaption prices at each day in the dataset. LSS
focus on whether cap prices are consistent with swaption prices. They do not study the
consistency of the interest rate volatility term structure and cap prices. A by-product of
their estimation results is that the correlations, implied by their two-step procedure, are all
lower than the historically observed correlations. A potential problem with the approach of
LSS is that the daily re-calibration is inconsistent with the model (which has constant para-
meters over time) and implies that the option-implied correlations change from day to day.
Also, the LSS two-step procedure can lead to strange shapes for the correlation matrix,
since it results from linear combinations of the eigenvectors. In contrast, we do not rely on
a two-step procedure and directly parameterize the interest rate covariance matrix. Also,
we do not re-calibrate our model every day, but base our analysis on moment conditions
that involve the time series averages of cap and swaption prices.

Jagannathan, Kaplin, and Sun (JKS, 2001) and Han (2001) also find discrepancies be-
tween interest rate data and prices of caps and swaptions. JKS estimate three-factor affine
models using interest rate data and cap prices, and report large pricing errors for caps
and swaptions. These results may be driven by the restrictive covariance matrix structure
implied by the three-factor CIR model. Han (2001) estimates a two-factor model with sto-
chastic bond price volatilities using interest rate data and swaption prices. He shows that
including stochastic bond price volatilities and correlations is important to explain swap-
tion prices and interest rate covariances. Still, cap prices implied by this model are not
completely consistent with observed cap prices.

The remainder of this paper is organized as follows. Section 1 discusses and motivates
the modeling framework. Section 2 describes the interest rate data and option price data,
as well as the estimation methodology. Section 3 contains the results on the comparison of
option and interest rate data, and discusses a trading strategy based on the results. Section 4
concludes and discusses possible explanations for our results.

1. Extracting Information from Cap and Swaption Prices

1.1. Setup

We start with a short review of caps and swaptions. We use a finite set of dates T1 < T2 <

· · · < TN , the so-called tenor structure. We also define δi = Ti+1−Ti , i = 1, . . . , N−1, as
the so-called daycount fraction, which is equal to the maturity of the Libor rate that is used
to determine caplet payoffs and is most often equal to 3 or 6 months. Associated with each
tenor date Tn is a bond that matures at this date, and its time t price is denoted with P(t, Tn).
These N bond prices, with maturities T1, . . . , TN , determine N − 1 forward Libor rates.
The forward Libor rate L(t, Tn) is defined by L(t, Tn) = (P (t, Tn)/P (t, Tn+1) − 1)/δn.



102 DE JONG, DRIESSEN, AND PELSSER

A caplet with strike rate k and maturity date Tn pays off δn(L(Tn, Tn) − k)+ at time
Tn+1. In general, the price of this caplet at time t can be calculated using the expectation
of the discounted payoff under the so-called forward martingale measure Qn+1:

Caplet(t, Tn, k) = P(t, Tn+1)E
n+1
t

[
δn

(
L(Tn, Tn) − k

)+]
. (1)

A cap is a sum of caplets of different maturities. The expression in (1), which is, of course,
similar to the price equation for equity options, implies that the volatility of the forward
Libor rate L(t, Tn) is the most important determinant of the caplet price.

A swaption is an option on a swap. Consider a forward swap, with principal 1,
where two parties agree to exchange at dates {Tn+1, . . . , Tn+m} the floating Libor rates
{L(t, Tn), . . . , L(t, Tn+m−1)} for a fixed rate. The forward swap rate is the fixed rate that
gives this contract zero initial value and is given by

S(t, Tn, Tm) =
∑m

j=1 δn+j−1P(t, Tn+j )L(t, Tn+j−1)∑m
j=1 δn+j−1P(t, Tn+j )

= P(t, Tn) − P(t, Tn+m)∑m
j=1 δn+j−1P(t, Tn+j )

. (2)

A payers swaption with strike rate k, maturity date Tn and m payment dates gives right
to enter into a swap at date Tn, where floating Libor payments are received and fixed
payments k are paid. Equivalently, a payers swaption gives the right to receive a series
of cash flows δn+j−1(S(Tn, Tn, Tm) − k)+ at dates Tn+j , j = 1, . . . ,m (see Musiela and
Rutkowski (1997)).

Equation (2) shows that a forward swap rate depends on several forward Libor rates,
so that the variance of a swap rate is a function of both the variances and covariances (or
correlations) of forward Libor rates. Swaption prices thus contain information on both the
variances and covariances of forward Libor rates of different maturities, whereas caplet
prices only contain information on the variance of a single forward Libor rate.

1.2. Libor Market Models

As outlined in the introduction, our aim is to compare the historically estimated interest
rate variances and covariances with the variances and covariances implied by caps and
swaptions. In order to “invert” the cap and swaption prices to interest rate variances and
covariances, we choose the Libor market model (LMM) as modelling framework, which is
described in this subsection.

The LMM assumes lognormal processes for forward Libor rates. As shown by Kerkhof
and Pelsser (2002), the LMM framework is equivalent to the discrete-tenor string model
of Longstaff, Santa-Clara, and Schwartz (2001). Our option price data consist of implied
Black (1976) volatility quotes for caps and swaptions, and the LMM implies simple Black-
type pricing formulas for caps (and approximate pricing formulas for swaptions). This
facilitates the estimation of the model. In De Jong, Driessen, and Pelsser (2001) other
advantages of the market models are mentioned.

We analyze a LMM where each forward Libor rate is driven by its own factor. These
factors are allowed to be correlated across forward maturities. Such a LMM implies that
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the forward Libor rate L(t, Tn) satisfies the following Itô process under the true probability
measure

dL(t, Tn)

L(t, Tn)
= µ(t, Tn)dt + σ(t, Tn)dWn(t), n = 1, . . . , N − 1. (3)

The function µ(t, Tn) is the drift function of the forward Libor rate, and σ(t, Tn) is a one-
dimensional function (the volatility parameter) for the forward Libor rate with maturity
date Tn. Wn(t) is a standard Brownian motion. The Brownian motions that drive the
different forward Libor rates are allowed to be correlated: the correlation between Wi(t)

and Wj(t) is denoted by ρ(t, Ti, Tj ).
By choosing one of the N bonds as the numeraire asset, we can obtain the process of the

forward Libor rates under the equivalent martingale measure associated with this numeraire
choice. Under such an equivalent martingale measure, the drift of the forward Libor rates is
completely determined by the volatility and correlation parameters, see Jamshidian (1997).
For example, if we take the longest maturity bond P(t, TN ) as the numeraire, we obtain
the so-called terminal measure QN , under which forward Libor rates follow the process

dL(t, Tn)

L(t, Tn)
= −

N−1∑
i=n+1

δiL(t, Ti)σ (t, Ti)σ (t, Tn)ρ(t, Ti, Tn)

1 + δiL(t, Ti)
dt + σ(t, Tn)dW∗

n (t),

n = 1, . . . , N − 1, (4)

where W∗
n (t) is a one-dimensional Brownian motion under the terminal measure. Note

that, when changing the probability measure, the correlation structure of the Brownian
motions remains unchanged.

We refer to Brace, Gatarek, and Musiela (1997) and Jamshidian (1997) for the pricing
formulas for caps and swaptions. Most importantly, these formulas show that cap prices
depend on conditional variances of forward Libor rates, whereas swaption prices both de-
pend on conditional variances and covariances of forward Libor rates. The pricing formula
for swaptions given by Brace, Gatarek, and Musiela (1997) is an approximate pricing for-
mula. For our empirical analysis, we use this approximate pricing formula for estimation.
To calculate swaption prices at the final parameter estimates, we simulate the LMM using
an Euler discretization of (4).1 Our results indicate that the approximate pricing formula
of Brace, Gatarek, and Musiela (1997) is quite accurate: the maximum difference between
the simulation price and the analytical approximation in our analysis is 0.10 Black volatil-
ity points (which turns out to be roughly 0.8% of the price). On average, the analytical
approximation yields prices that are slightly lower than the prices obtained by simulation,
but the average difference is only 0.04 volatility points. These errors seem small compared
to the bid-ask spread of around 6% that is typically found in the swaptions market (see
Longstaff, Santa-Clara, and Schwartz (2001)).

Equations (3) and (4) imply a simple structure on the variances and covariances of in-
stantaneous changes in log-forward Libor rate changes

Cov
(
d ln Li(t), d ln Lj(t)

) = ρ(t, Ti, Tj )σ (t, Ti)σ (t, Tj )dt, i, j = 1, . . . , N − 1. (5)
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This relation will later be used to derive moment conditions for the historically estimated
variances and covariances of forward interest rates.

1.3. Specification of Volatility and Correlation Parameters

Equation (4) implies that, in order to price and hedge interest rate derivatives, only
the volatility parameters σ(t, Tn), n = 1, . . . , N − 1, and the correlation parameters
ρ(t, Ti, Tj ), i, j = 1, . . . , N − 1, have to be determined. In this subsection we propose
a parameterization for the volatility and correlation parameters. Following Santa-Clara and
Sornette (2001), we directly parametrize the volatilities and correlations, as opposed to the
usual approach that specifies the dynamics of the underlying factors.

If the volatility and correlation parameters explicitly depend on time t , these parameters
become time-inhomogenous, which would make the comparison between interest rate data
and option prices problematic. Furthermore, all standard models of the term structure,
such as the affine models of Duffie and Kan (1996), imply time-homogenous volatility and
correlation parameters (i.e., volatility and correlation parameters than only depend on the
time to maturity). Therefore, we impose time-homogeneity on the specification for these
parameters:

σ(t, Ti) = σ(Ti − t), ρ(t, Ti, Tj ) = ρ(Ti − t, Tj − t), i, j = 1, . . . , N − 1, (6)

where σ(·) and ρ(·, ·) are functions that remain to be specified. The specification of these
functions should be such that it allows for large variety of volatility and correlation shapes
across maturities. In particular, the functions should be able to generate some of the par-
ticular features of interest rate volatilities and correlations, such as a humped shape term
structure of volatilities, as well as interest rate correlations that decrease with the difference
between the two associated maturities.

For the volatility parameters, we use the following parameterization:2

σ(T − t) = σ0 + σ1 exp
(−κ1(T − t)

) + σ2 exp
(−κ2(T − t)

)
. (7)

This parameterization can generate both decreasing, increasing, and hump shaped volatil-
ity structures. If σ0 = σ2 = 0, we obtain the volatility function implied by an one-factor
Vasicek (1977) model, that is also used by Santa-Clara and Sornette (2001). Our specifi-
cation can be seen as an extension of this specification that allows for a humped volatility
structure. More precisely, a humped shape can be obtained if σ1 and σ2 are of opposite
sign, given that κ1 and κ2 are both positive.

We use the following flexible form for the correlation structure3

ρ(Ti − t, Tj − t) = exp

(
−γ1|Ti − Tj | − γ2|Ti − Tj |

max(Ti − t, Tj − t)γ3

−γ4

∣∣∣√Ti − t − √
Tj − t

∣∣∣
)

, γ1, γ2, γ4 > 0. (8)

This specification extends the correlation functies studies by Santa-Clara and Sor-
nette (2001), who analyze the case γ2 = γ4 = 0 and the case γ1 = γ2 = 0. Our
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Figure 1. Impact of correlation parameters. This graph shows the change in the correlation of a 3-month forward
Libor rate with forward Libor rates of other forward maturities, due to a change in one of the four parameters in
Equation (8) of 1% at the estimated parameter values. For γ1 we use a change of 0.5% in order to have similar
scales.

specification captures the effect that correlations decrease with the maturity difference,
and that this maturity decay differs for short and long forward maturities. In Figure 1, we
graph the influence of the several parameters in (8) on the correlation structure, by plotting
the partial derivatives of the correlations with respect to the parameters (at the parameter
estimates obtained by so-called joint estimation, see Section 3.2). Increasing the parameter
γ1 causes correlations to decrease, where the size of the decrease is positively related to the
maturity difference. Through the parameters γ2 and γ3, the specification in (8) allows for
a correlation decay that differs across maturities. In particular, if γ3 > 0, the correlation
decay for longer maturities is smaller than for short maturities, and if γ3 < 0, the converse
is true. Figure 1 shows that increasing this parameter leads to lower correlations for short
maturities, and higher correlations for longer maturities. The parameter γ4 implies a decay
of the correlation function that is, relative to the influence of γ1, stronger for small maturity
differences and smaller for larger maturity differences. This turns out to be important to fit
interest rate and option price data.

The above specification is based on a structure where the number of Brownian motions
is equal to the number of forward Libor rates. In a large part of the term structure litera-
ture, models with two or three factors are estimated. In the empirical analysis we provide a
comparison with a three-factor model. We choose the following time-homogeneous speci-
fication for this three-factor model

Cov
(
d ln Li(t), d ln Lj (t)

)
= [

α1e
−β1(Ti−t ) α2e

−β2(Ti−t ) α3e
−β3(Ti−t )

]

×

 1 θ12 θ13

θ12 1 θ23
θ13 θ23 1





α1e

−β1(Tj −t )

α2e
−β2(Tj −t )

α3e
−β3(Tj −t )


 dt, i, j = 1, . . . , N − 1. (9)
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We allow for an unrestricted correlation matrix, with elements θij , i, j = 1, . . . , 3, for the
Brownian motions,4 since Dai and Singleton (2000) illustrate that allowing for nonzero
correlations between factors in (affine) term structure models is important for accurately
describing US interest rate behavior. The three-factor model in (9) has exponentially down-
ward sloping volatility functions. These volatility functions are very similar to the volatility
functions implied by affine term structure models of Duffie and Kan (1996), in particular,
the K-factor version of the Vasicek (1977) model. Note that the number of parameters of
this model is exactly equal to the number of parameters in our full-factor specification in
Equations (7) and (8).

2. Data and Testing Methodology

2.1. Data

We use two data sets: one data set containing US money-market rates and swap rates and
another data set containing implied Black (1976) volatilities of US caps and swaptions.

The derivatives data that we use are weekly quotes for the implied Black (1976) volatili-
ties of at-the-money-forward (ATMF) US caps and swaptions. For these data we have 232
weekly observations from January 1995 until June 1999. The caps have maturities ranging
from 1 to 10 years, and their payoffs are defined on 3-month Libor rates. The 1-year cap
consists of 3 caplets with maturities of 3, 6, and 9 months, and the 10-year cap consists of
39 caplets, with maturities ranging from 3 months to 9 years and 9 months. The other caps
are constructed in a similar way. The strike of each ATMF cap is equal to the correspond-
ing swap rate with quarterly compounding. Note that this implies that the caplets of the cap
are not exactly at-the-money-forward. The Black implied volatilities for caps are so-called
flat volatilities. This implies that the price of the cap is obtained by applying the Black
formula to each caplet using the same volatility parameter (the quoted volatility for the
cap) for all caplets. In Figure 2 we plot the time series average of the implied volatilities
of the caps. There is evidence for a hump shaped volatility structure.

For swaptions, we use three option maturities, 3 months, 1 year, and 5 years, and four
swap maturities, 1 year, 3 years, 5 years, and 7 years. Since the 5×7 swaption is not in our
dataset, we end up with 11 different swaptions.5 The strike of an at-the-money-forward
swaption is equal to the corresponding forward swap rate. In Figure 3, we plot the time
series averages of the swaption implied volatilities. Again, there is evidence for a volatility
hump at the short end of the maturity axis.

The second dataset involves US interest rates. We use US money-market rates with ma-
turities of 3, 6, 9, and 12 months, and data on US swap rates with maturities ranging from
2 to 10 years to estimate the forward Libor rate curve using a piecewise constant speci-
fication for this forward Libor rate curve (for a 3-month Libor maturity of each forward
Libor rate), where the forward Libor rates are constant between the maturities of the ob-
served money-market and swap rates. This way, we obtain a perfect fit of the observed
money-market and swap rates. In Section 3.4, we examine whether it is likely that there is
measurement error in these interest rates.
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Figure 2. Term structure of cap Black volatilities. The figure reports term structures of Black volatilities
for caps. The solid line represents the time series average of the cap volatility data over the period January
1995–June 1999. The other lines represent the time-series averages of cap Black volatilities, which are implied
by model-based cap prices from interest-rate-based estimation and option-based estimation of the parameteriza-
tion in (7) and (8).

Figure 3. Term structures of swaption Black volatilities. The figure reports term structures of Black volatilities
for swaptions. The solid lines represent the time series average of the swaption volatility data over the period
January 1995–June 1999. The other lines represent the time-series averages of swaption Black volatilities, which
are implied by model-based swaption prices from interest-rate-based estimation and option-based estimation of
the parameterization in (7) and (8).
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Figure 4. Term structure of forward Libor volatilities. The figure reports term structures of forward Libor rate
volatilities. The solid line represents annualized standard deviations of weekly forward Libor rate changes as
observed in the 1995–2000 sample period. The other lines represent the model-implied annualized standard devi-
ations of forward Libor rate changes, for respectively interest-rate-based estimation and option-based estimation
of the parameterization in (7) and (8).

For the interest rate data, we use weekly data from January 1995 until June 2000. Be-
cause options are forward-looking, in the sense that they contain information on the “ex-
pected” interest rate variances and covariances, we extend the interest rate data period one
year beyond the last observation on derivative prices in June 1999. This is similar to Chris-
tensen and Prabhala (1998) and others, who use realized volatility of the underlying equity
price to assess the predictive value of option-implied equity volatility.

In Figure 4 the annualized standard deviations of changes in the log-forward Libor rates
are plotted. In line with results presented in Amin and Morton (1994), and Moraleda and
Vorst (1997), there is evidence for a humped volatility structure for forward Libor rate
changes. In Figure 5, we graph the correlation matrix of weekly changes in the logarithm
of these forward Libor rates, estimated directly from the data without restrictions as in
Equation (8). Correlations are typically quickly decreasing in the maturity difference,
and Libor rates with longer forward maturities are somewhat more interrelated than short-
maturity forward Libor rates.

2.2. Estimation and Testing Methodology

In this subsection, we derive moment conditions for both the caps and swaptions data and
the interest rate data. The moment conditions are used to estimate the parameters in the
specification of the volatilities and correlations in Equations (7) and (8), and allow us to
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Figure 5. Data correlation matrix. The figure graphs the correlations between forward Libor rate changes of
different forward maturities, estimated directly from weekly data on these rates from 1995–2000.

analyze the consistency of the information in cap and swaption prices and interest rates.
We use two sets of moment restrictions:

1. Variances of log forward Libor rate changes and covariances between log forward Libor
rate changes of different forward maturities.

2. Expected (squared) cap implied volatilities and swaption implied volatilities.

We refer to estimation on the basis of the first set of moments as interest-rate-based
estimation or historical estimation, and to estimation on the basis of the second set of
moments as option-based estimation or implied estimation. The use of both sets of moment
restrictions is referred to as joint estimation. All moment restrictions are formulated under
the true probability measure.

The first set of moment restrictions is based on a time-discretization of Equation (5),
which gives

Cov
(
	 ln Li(t),	 ln Lj(t)

) = ρ(Ti−t, Tj−t)σ (Ti−t)σ (Tj−t)	t, i, j = 1, . . . , N−1.

(10)
By approximation, this relation holds for small time intervals 	t . This approximate re-
lation is only exact if the drift of the log forward Libor rates is deterministic. Since we
use weekly time intervals, the variation in the drift rate is most likely low, so that this
approximation is accurate.

Using data on the log forward Libor rates, we can estimate the left-hand side of Equa-
tion (10) and confront these estimates with the model-implied (co)variances on the right-
hand side. For estimation, we annualize the (co)variances by multiplying (10) with 1/	t



110 DE JONG, DRIESSEN, AND PELSSER

such as to obtain the same scaling for these restrictions as the implied volatilities (see
below).6

To derive the moment restrictions for derivative prices, we assume that the (square of the)
observed implied Black volatility quote for a cap or swaption is equal to the (square of the)
Black volatility that corresponds to the model price, plus an independent zero-expectation
error term, that represents measurement error in the observed implied volatility quote. For
caps, we thus get

[
IVC(t, Ti)

]2 = [
IVC,Model(t, Ti)

]2 + ηi(t), E
(
ηi(t)

) = 0, (11)

where IVC(t, Ti) is the observed implied flat volatility for the cap with maturity Ti .
IVC,Model(t, Ti) is the Black flat volatility for this cap implied by the model. At a given
time t , the latter volatility is obtained as follows. First, given certain parameter values for
the model in (7) and (8), we calculate model-implied prices for all caplets. Summing over
all relevant caplet prices gives the price of the cap. This model-implied cap price is then
inverted to a single Black flat volatility parameter IVC,Model(t, Ti), which can be directly
compared to the quoted flat volatility that is observed in the data.

For swaptions, the moment restriction are completely similar to (11). Again, the model-
implied swaption price is inverted to a Black volatility parameter, which can be compared
with the quoted Black volatility for the swaption. We take the square of the implied volatil-
ities so that these moment restrictions are measured with the same scale as the restrictions
in (10). By taking the unconditional expectation on both sides of Equation (11) we obtain
moment restrictions for caps and swaptions.7

As noted above the prices of caps depend on the conditional variances of Libor rates,
whereas the prices of swaptions depend both on conditional variances and covariances of
forward Libor rates of different forward maturities. Thus, both sets of moment restrictions
involve (conditional) variances and covariances of forward Libor rates, and from both sets
of moment restrictions it is possible to identify all volatility and correlation parameters.

We use the Generalized Method of Moments (Hansen, 1982) to estimate the parameters
in the volatility and correlation specification in Equations (7) and (8). For the forward Libor
rate variance restrictions, we choose the following forward maturities (in years): 0.25, 0.5,
0.75, 1.5, 2.5, 3.5, 4.5, 6.5, and 8.5, in total 9 moment restrictions. The first three of these
maturities are equal to the money-market rate maturities. Since we use a piecewise constant
forward Libor rate curve, we choose for the remaining maturities the midpoints between
the available swap maturities. For the covariance restrictions, we take the covariances
between forward Libor rate changes of all these forward Libor rate maturities, in total 36
moment restrictions. Below, we discuss how we weight these moment restrictions.

For the cap moment restrictions, we use all 7 option maturities that are available in
the cap data, ranging from the 1-year cap to the 10-year cap. For the swaption moment
restrictions, we include the 11 swaptions discussed in Section 2.1.

Applying the first step of GMM, we choose a diagonal weighting matrix. Recall that
we formulated all moment restrictions such that they all refer to annualized variances and
covariances. We choose the diagonal weights such that the four sets of moment conditions
(interest rate variances, interest rate covariances, cap volatilities, and swaption volatili-
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ties) contribute equally to the GMM goal function. The GMM weighting matrix W then
becomes

W =




1

N2
1

IN1 0N1×N2 0N1×N3 0N1×N4

0N2×N1

1

N2
2

IN2 0N2×N3 0N2×N4

0N3×N1 0N3×N2

1

N2
3

IN3 0N3×N4

0N4×N1 0N4×N2 0N4×N3

1

N2
4

IN4




, (12)

where IN is an N-dimensional identity matrix, and 0N×M is an N-by-M matrix with zeros.
This implies that each variance restriction is weighted with 1/9 (N1 = 9), each covariance
restriction with 1/36 (N2 = 36), each cap restriction with 1/7 (N3 = 7), and each swaption
restriction with 1/11 (N4 = 11). This way, none of these four sets of restrictions dominates
the estimation results. Within each of the four sets of moment restrictions, we use constant
diagonal weights. For interest-rate based estimation, the N1 + N2 by N1 + N2 weighting
matrix is the upper left block of the matrix in (12), while for option-based estimation the
lower right block of the matrix in (12) is used as the N3 +N4 by N3 +N4 weighting matrix.

As an alternative to constant diagonal weights, we also perform an option-based esti-
mation where we weight each option moment restriction using the inverse of the variance
of the option implied volatility over the sample period.8 This way, options for which the
implied volatility is very stable over time obtain a higher weight in the estimation. In our
sample, swaption volatilities turn out to be more stable than cap volatilities.

It turns out that the co variance matrix of these estimated moment restrictions is close
to singularity.9 The efficient, second step of GMM requires that the inverse of the co-
variance matrix of the estimated moment restrictions is used as the weighting matrix.
Hansen (1982) shows that this is the optimal choice for a correctly specified model as
it yields the lowest asymptotic variance for the GMM parameter estimates. However, as
noted by Cochrane (2001), using a near-singular covariance matrix as weighting matrix
implies that one fits the parameters to linear combinations of the original moment restric-
tions that have very large positive and negative weights on the original moment restric-
tions. Using these linear combinations of moment restrictions to estimate the model may
be statistically optimal for a correctly specified model (that is, asymptotically), but one
can question whether these extreme linear combinations are the most interesting moment
restrictions from an economic point of view (see Cochrane (2001)).

We find that, when using the optimal weighting matrix, the model is essentially fitted
to the differences between the moment restrictions rather than to the level of the moment
restrictions. Due to the high correlations between the estimated moment restrictions, the
standard errors of these differences are much lower than the standard errors of the levels.
When performing two-stage GMM estimation, we find that the shape of the Libor variance
term structure, the Libor covariance structure, and the cap and swaption implied volatility
term structures are fitted quite accurately, whereas the level of these term structures is not
fitted well. Therefore, we use in the empirical analysis only the first-stage GMM estimator,
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that is obtained using a diagonal weighting matrix. Of course, if the model is correctly
specified, this estimator is still consistent and asymptotically normal, and standard errors
and tests are constructed in a straightforward way.10

3. Empirical Results

We estimate the covariance matrix parameterization in (7) and (8) three times: on the basis
of interest-rate-based estimation, option-based estimation, and joint estimation.

3.1. Implications of Interest-Rate Based Estimation

In this subsection, we study the results obtained by interest-rate based estimation. In this
case, the parameters in the volatility and correlation functions in (7) and (8) are estimated
using variances and covariances on changes in forward Libor rates of different forward
maturities.

First, we check whether our parameterization in (7) and (8) is flexible enough to provide
a satisfactory fit to the interest rate moments. In Figure 4, we graph the fit to the interest
rate variance moments. This graph shows a good fit of the term structure of interest rate
variances. In Figure 6, we graph the correlation matrix implied by interest-rate based esti-
mation. Again, the fit is quite good: the average absolute difference between the correla-
tions implied by (8), and the historically observed correlations (Figure 5) is equal to 0.044.

Figure 6. Interest-rate based correlation matrix. Interest-rate-based estimation is performed as described in Sec-
tion 3.2. The figure graphs the correlations between forward Libor rate changes of different maturities, as implied
by the correlation parameterization in Equation (8) and interest-rate based parameter estimates (see Table 3).
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Table 1. Tests of Moment Restrictions

Interest-Rate-Based Option-Based Option-Based
Estimation Estimation Estimation

(Variance-Weighted)

Libor Variances – 0.000 0.000
Libor Covariances – 0.134 0.119
Variances + Covariances 0.142 0.000 0.000

Caps 0.004 – –
Swaptions 0.010 – –
Caps + Swaptions 0.004 0.579 0.419

All 0.000 0.000 0.000

Notes. The table reports p-values of joint tests of the moment restrictions in Equations (10) and (11), for different
estimation setups: interest-rate-based and option-based estimation described in Section 3.2, both using a identity
weighting matrix, and option-based estimation that uses a variance-weighted diagonal weighting matrix. We use a
standard Wald test to jointly test the moment restrictions. This test-statistic uses the asymptotic covariance matrix
of moment restrictions in case of GMM estimation (see Gourieroux and Monfort (1995)), and has asymptotically
a chi-square distribution. We correct the covariance matrix for heteroskedasticity and 8th-lag autocorrelation
using Newey–West (1987).

Table 2. Average Absolute t-ratios Moment Restrictions

Interest-Rate-Based Option-Based Estimation Option-Based Estimation
Estimation (Variance-Weighted)

Libor Variances (9) 0.677 (0) 1.474 (2) 1.395 (2)

Libor Covariances (36) 0.423 (0) 1.440 (12) 1.659 (14)

Caps (7) 3.432 (7) 0.227 (0) 0.270 (2)

Swaptions (11) 2.004 (6) 1.164 (2) 0.931 (1)

Notes. For all moment restrictions, the t-ratios of the individual moment restrictions are calculated using the
asymptotic covariance matrix of moment restrictions in case of GMM estimation (see Gourieroux and Mon-
fort (1995)), correcting for heteroskedasticity and 8th-lag autocorrelation using Newey–West (1987). The table
reports for each set of moments the average of the absolute value of these t-ratios, and the number of moment
restrictions that is individually rejected at the 5% significance level. As in Table 1, results are reported for
interest-rate-based estimation, option-based estimation, and variance-weighted option-based estimation.

The good fit of the covariance matrix parameterization is also shown in Table 1, where we
tabulate the p-values of joint tests of (subsets of) moment restrictions. The p-value for the
test that the covariance matrix parameterization correctly describes the interest rate vari-
ance and covariance moment restrictions is 0.142. In Table 2 we report average absolute
t-values for the individual moment restrictions. This table shows that none of the interest
rate variance and covariance restrictions in (10) are significantly misfitted.

Next, we analyze the implications for prices of caps and swaptions (measured in Black
volatilities). The results are shown in Figures 2 and 3. First of all, Figure 2 shows that
the cap prices implied by the interest-rate based covariance matrix are much lower than
the average observed prices for all cap maturities. For the 2-year and 3-year caps the
difference amounts to almost 3 volatility points, averaged over the 1995–1999 period. Not
surprisingly, Table 2 shows that each cap price restriction in (11) is individually rejected,
and Table 1 reveals that the joint test of the cap price restrictions also leads to a rejection.
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Interestingly, the Black volatility term structure implied by interest-rate based estimation
does exhibit a hump shaped form, but the hump is too low and too “flat” to fit the cap price
data.

In Figure 3 we plot the implications of the interest-rate based covariance matrix for
swaption Black volatilities. For 9 out of the 11 swaptions, the interest-rate based covariance
matrix gives too low prices for swaptions. Also, for short swap maturities, the hump in
the fitted Black volatilities is too pronounced compared to the observed hump, whereas the
fitted hump shape is too flat for swaptions with longer swap maturities. Tables 1 and 2 show
that the mispricing of swaptions, when using the interest-rate based covariance matrix, is
jointly significant and individually significant for six swaptions.

A possible explanation for these results might be the fact that our 1995–1999 data
period for the option data contains the Russia/LTCM crisis, during which option prices
were higher than under “normal” market conditions (see also (Longstaff, Santa-Clara, and
Schwartz, 2001)). Therefore, we have recalculated the time series averages of the observed
Black volatilities in Figures 2 and 3, now excluding the 4-month period from August 1998
until November 1998. The results, depicted in Figures 7 and 8, show that this leads to
slightly lower averages for the observed Black volatilities, but these averages are still very
different from the Black volatilities implied by the interest-rate based covariance matrix.
Thus, even when excluding this period of extreme market conditions, the mispricing re-
mains.

Summarizing, the results in this subsection point at a significant difference between the
covariance information in cap and swaption prices and the (co)variability of the term struc-

Figure 7. Term structure of cap black volatilities. The figure reports the time series average of the cap volatility
data, using the full data set (solid line), and using a data set that excludes the Russia/LTCM crisis period, August
1998–November 1998 (dotted line). For comparison, the dashed line represents the time-series averages of cap
Black volatilities implied by interest-rate based estimation.



INFORMATION IN INTEREST RATE TERM STRUCTURE AND OPTION PRICES 115

Figure 8. Term structures of swaption black volatilities. The figure reports the time series average of the swap-
tion volatility data, using the full data set (solid line), and using a data set that excludes the Russia/LTCM crisis
period, August 1998–November 1998 (dotted line). For comparison, the dashed line represents the swaption
Black volatilities implied by interest-rate based estimation.

ture of interest rates. Buhler et al. (1999) and Driessen, Klaassen, and Melenberg (2003)
test particular low-factor term structure models on the basis of option pricing performance,
using interest rate data to estimate the parameters. Although they do not compare the infor-
mation in interest rate data directly with the information in option price data, these articles
report substantial option pricing errors, which is consistent with our results.

3.2. Implications of Option-Based Estimation

In this subsection, we study the results obtained by option based estimation. In this case,
the parameters in (7) and (8) are estimated using the moment restrictions for cap and swap-
tion prices in Equation (11). This estimation procedure is related to previous literature,
where option price data are used to estimate and test particular term structure models.11

We first analyze whether option-based estimation leads to a good fit of average prices
of caps and swaptions. Figure 2 shows that the fit to cap Black volatilities is almost per-
fect. The fit to swaption Black volatilities, shown in Figure 3, is reasonably good, except
perhaps for swaptions with short swap maturities. In total, Table 2 shows that 16 of the
18 options are not significantly mispriced, and a joint test of all cap and swaption moment
restrictions does not lead to a rejection. Therefore, we conclude that our covariance matrix
specification provides a reasonable fit to the option price data. Table 2 also shows that these
results are robust to using the variance-weighted GMM procedure. Given that this proce-
dure gives more weight to swaptions and less to caps, it is not surprising to see in Table 2
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Table 3. Parameter Estimates

Interest-Rate-Based Option-Based Option-Based
Estimation Estimation Estimation

(Variance-Weighted)

σ0 0.147 (0.008) 0.137 (0.004) 0.148 (0.004)

σ1 0.427 (0.496) 0.808 (0.997) 0.468 (0.803)

σ2 −0.565 (0.457) −0.972 (0.953) −0.572 (0.492)

κ1 1.062 (0.978) 1.089 (0.519) 0.901 (0.488)

κ2 1.726 (1.308) 1.688 (1.097) 1.472 (0.981)

γ1 0.000 (–) 0.009 (0.012) 0.008 (0.009)

γ2 0.480 (0.099) 1.127 (0.693) 1.031 (0.539)

γ3 1.511 (0.289) 1.849 (0.386) 1.724 (0.318)

γ4 0.186 (0.127) 0.024 (0.098) 0.025 (0.065)

Notes. Interest-rate based estimation, option-based estimation, and variance-weighted option-based estimation
of the parameters in the covariance matrix parameterization in Equations (7) and (8) is performed as described
in Section 3.2. Each estimation setup is the first-step of GMM. The table reports the parameter estimates and
associated standard errors, calculated using Newey–West (1987).

that variance-weighted GMM leads to lower t-ratios for swaptions and higher t-ratios for
caps. The difference with constant-weights GMM is, however, small. This can also be seen
in Table 3 which presents the parameter estimates for both estimation approaches, which
are quite similar to each other.

Next, we investigate whether the option-implied estimates lead to a good fit of the
interest-rate moment restrictions. First, we look at the interest rate variances, or, equiv-
alently, the term structure of forward Libor rate volatility. Figure 4 graphs these term
structures. Compared to the realized (historically estimated) Libor rate volatilities, the
option-implied forward Libor rate volatility term structure is higher at the short end and
lower for long forward maturities. It is important to understand the relation between these
differences and the underpricing of caps in case of interest-rate based estimation. Since a
cap is a portfolio of caplets of different maturities, the Black volatility for a cap is roughly
the average of the caplet’s Black volatilities. In turn, the caplet Black volatility is the
option-implied volatility of the corresponding forward Libor rate. Therefore, although for
long forward maturities the realized Libor volatility is higher than the option-implied Libor
volatility, the cap Black volatilities implied by interest-rate based estimation (which uses
the realized volatility) are all lower than the observed cap Black volatilities, because for
short and intermediate maturities the option-implied Libor volatility is higher than realized
Libor volatility.

In Figure 9 we graph the correlation matrix implied by the option prices. The option-
implied correlations of short-maturity forward Libor rates with other short-maturity for-
ward Libor rates are much lower than the realized interest rate correlations, while all other
correlations, that involve longer forward maturities, are higher in case of option-based esti-
mation. For example, the correlation between the 3-month forward Libor rate and 6-month
forward Libor rate is equal to 0.697 based on the historical interest rate data, while the
option-implied estimate is 0.362. This is confirmed by the parameter estimates for the cor-
relation structure in Equation (8), which are given in Table 3. Compared to interest-rate
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Figure 9. Option based correlation matrix. Option-based estimation is performed as described in Section 3.2.
The figure graphs the correlations between forward Libor rate changes of different maturities, as implied by the
correlation parameterization in Equation (8) and option based parameter estimates (see Table 3).

based estimation, option-based estimation leads to higher estimates for γ2 and γ3, and a
lower estimate for γ4, which in total decreases short-maturity correlations and increases
long-maturity correlations. These results on the correlation matrix are slightly different
from Longstaff, Santa-Clara, and Schwartz (2001), who find that option-implied correla-
tions are always lower than correlations estimated from interest rate data.

The formal tests of the interest rate variance and covariance moment restrictions in case
of option-based estimation (Tables 1 and 2) indicate that the difference between the option-
implied and realized interest rate covariance matrix is statistically significant in most cases.
Again, these results are robust to using a variance-weighted GMM procedure for option-
based estimation instead of using constant diagonal weights.

We also use a different test to analyze whether the information in interest rate data is
consistent with the option price data. We test whether the parameters in the covariance
matrix specification in (7) and (8), estimated using either interest rate data or option price
data, are equal to each other. Since the joint set of interest rate and option price moment
restrictions has asymptotically a normal distribution, it is easy to show that the interest rate
based parameter estimator and the option based parameter estimator have a joint normal
asymptotic distribution, so that a simple chi-square test can be performed to test this hy-
pothesis. The p-value for this test turns out to be 0.0023, so that the hypothesis that the
option-implied parameters are equal to the interest-rate implied parameters is rejected.

In Section 1, we also presented a three-factor model (Equation (9)) as a comparison to
our specification of the covariance matrix in the full-factor model in (7) and (8). To avoid
an overload of tables and figures, we only present results for this three-factor model in
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Table 4. Option Pricing Errors

Caps Swaptions

Avg. Volatility Avg. Abs. Avg. Avg. Abs.
Point Error Volatility Point Volatility Volatility Point

Error Point Error Error

Interest Rate Based Estimation −2.01 2.01 −0.70 0.79
Option Based Estimation −0.01 0.14 0.01 0.40
Option Based Estimation −0.08 0.21 0.03 0.34
(Variance-Weighted)

3-Factor Model −0.22 0.31 0.15 0.57
Option Based Estimation

Notes. The table reports option pricing errors for caps and swaptions, measured in Black volatility percentages
(also referred to as Black volatility points). Results are given for the full-factor model in Equations (7) and (8), for
three sets of estimation results: interest-rate-based estimation, option-based estimation, and variance-weighted
option-based estimation. The table also includes results for option-based estimation of the three-factor model in
Equation (9).

case of option-based estimation. In Table 4, we give the pricing errors in terms of volatility
points for this three-factor model. It follows that, although the three-factor model and
the full-factor model contain an equal number of parameters, the fit of the three-factor
model is less good.12 In particular, while the full-factor model yields pricing errors that
are on average very close to zero for caps and swaptions, the three-factor model on average
underprices caps and overprices swaptions. The main reason for this result is that the three-
factor model cannot generate the correlation structure that is implicit in swaption prices.
This is shown in Figure 10, where we graph the covariance matrix implied by the three-
factor model and option-based estimation. Compared to Figure 9, the three-factor model
cannot generate low correlations between short-maturity interest rates, and it implies very
high correlations between near-maturity interest rates. Rebonato (1996) also discusses this
property of low-factor term structure models using principal components analysis.

Finally, we note that we have also performed a joint estimation of the full-factor model
that uses both the interest rate moment restrictions and the cap and swaption moment re-
strictions. As expected, the jointly estimated covariance matrix is roughly the average of
the historically estimated covariance matrix and the option-implied covariance matrix, and
there is a clear trade off in the fit of the interest rate moments and the fit of the cap/swaption
moments. In total, a joint test of all moment restrictions (the GMM ‘J -test’) again leads to
a rejection.

3.3. Trading Strategies

So far, we have provided evidence for a significant difference between the historical and
option-implied interest rate covariance matrix. In order to assess the economic significance
of this difference, we set up trading strategies that try to exploit this difference. Given that,
on the basis of interest-rate-based estimation, almost all observed option prices seem to be
too high on average, each trading strategy takes a short position in a cap or swaption (i.e.,
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Figure 10. Option based correlation matrix: three-factor model. The figure graphs the correlations between
forward Libor rate changes of different maturities, as implied by option-based estimation of the three-factor
model in Equation (9).

writing each option). We calculate for each cap and swaption the LMM-implied deltas with
respect to the hedge instruments (zero-coupon bonds of different maturities), and construct
for each derivative instrument a delta-hedged portfolio. After a week, we compute the
return on this hedge portfolio, using the observed prices for the hedge instruments and the
derivatives.13 This procedure is repeated each week. Given that we observe option quotes
for fixed option maturities, we do not follow an option until maturity. The convexity and
time value of the hedged short option position imply that this strategy generates a profit
if interest rates do not move much, and a loss in case of large interest rate movements.
Given the positive difference between option-implied and historical volatilities, we expect
on average positive returns for these strategies.

Our interest-rate hedging method follows the so-called bucket hedging approach of
Driessen, Klaassen, and Melenberg (2003). This procedure uses zero-coupon bonds for
hedging options, where the bond maturities match all tenor dates of the cap or swaption.
Given the full-factor model that is used in this paper, this bucket hedging procedure is ap-
propriate since it does not impose any restriction on the movements of bond prices across
different maturities. The hedge instruments for each cap or swaption are zero-coupon
bonds with maturities that correspond to all payment dates relevant to the particular deriv-
ative. For example, for a 2-year cap, that consists of 7 quarterly caplets, we use as hedge
instruments zero-coupon bonds with maturities of 3 months, 6 months, and so on, up to 2
years. For a 1-year option on a 5 year swap with annual payments, we use zero-coupon
bonds with maturities of 1 year, 2 years, and so on, up to 6 years, as hedge instruments.
The time-t price V (t) of a cap or swaption is a function of precisely these zero-coupon
bonds. In formulas we have
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Table 5. Sharpe Ratios of Trading Strategies

Annual Sharpe Ratio Annual Sharpe Ratio

1Y Cap 0.230 5Y × 1Y Swaption 0.025
2Y Cap 0.264 3M × 3Y Swaption 0.163
3Y Cap 0.249 1Y × 3Y Swaption 0.143
4Y Cap 0.232 5Y × 3Y Swaption −0.023
5Y Cap 0.206 3M × 5Y Swaption 0.154
7Y Cap 0.151 1Y × 5Y Swaption 0.128
10Y Cap 0.141 5Y × 5Y Swaption −0.020
3M × 1Y Swaption 0.110 3M × 7Y Swaption 0.207
1Y × 1Y Swaption 0.091 1Y × 7Y Swaption 0.083

Notes. The table reports Sharpe ratios of the trading strategies discussed in Section 3.3, which consist of a short
position in a cap or swaption, that is delta-hedged for interest-rate movements using discount bonds of different
maturities (see Section 3.3). The hedge portfolio is rebalanced every week. Using the time series of returns
on these hedge portfolios over the 1995–1999 data period, Sharpe ratios are calculated. The Sharpe ratios are
annualized assuming i.i.d. returns.

dV (t) = . . . dt + ∂V (t)

∂P (t, T )
dP (t, T ) +

n∑
j=1

∂V (t)

∂P (t, Tj )
dP (t, Tj ), (13)

where V (t) is the price of the derivative at time t , T is the maturity date of the caplet or
swaption, and T1, . . . , Tn are the payment dates. Thus, bonds of all relevant tenor dates
are included on the right-hand side. We leave the drift unspecified in (13), since it is not
relevant for the hedge strategy. Following Brace, Barton, and Dunn (1999) and Driessen,
Klaassen, and Melenberg (2003), we use the approximating swaption valuation formula of
Brace, Gatarek, and Musiela (1997) to calculate the hedge ratios.

We analyze a separate hedge strategy for each option, and calculate the Sharpe ratio
using the time series of returns of each strategy. Table 5 presents these Sharpe ratios, which
are annualized for convenience (assuming i.i.d. returns). To put the results into perspective,
common values for the equity premium of 5% and annual equity volatility of 20% give an
annual Sharpe ratio of 0.25. Our results show that especially the strategies for caps and
swaptions with short option maturities have economically very significant Sharpe ratios
of about 0.2. This is in line with Figures 2 and 3, which show that short-maturity caps
and swaptions have the largest mispricing. For swaptions with longer option maturities,
the Sharpe ratios are close to zero, in line with the small mispricing in Figure 3. In sum,
these results show that the difference between the historical and option-implied covariance
matrices is also economically significant.

3.4. Possible Explanations

The moment restrictions for the cap and swaption implied volatilities in (11) explicitly al-
low for the presence of measurement error. So far, we have neglected the possible presence
of measurement error in the interest rate data. We now include measurement error on the
interest rates in our model.
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There are several reasons to include the error term in the log forward Libor rate. First
of all, the underlying money-market and swap data might contain measurement error due
to illiquidity and time-of-the-day effects. Also, the first-order autocorrelation of weekly
changes in the log-forward Libor rate is, averaged over all forward maturities, equal to
−0.185, whereas the higher-order autocorrelations are close to zero or even positive. This
is an indication of the presence of measurement error, since it is easy to show that, abstract-
ing from the drift of forward Libor rates that is implied by the model, measurement error
in the level of interest rates leads to negative first-order autocorrelation for discrete-time
changes in the forward Libor rate, and zero higher-order autocorrelations.

In line with previous research on term structure models (for example, De Jong (2000)
and Duan and Simonato (1999)), we assume that the observed log forward rate,
ln L∗(t, Ti), is equal to the true rate ln L(t, Ti), plus a zero-expectation error term εi(t),
which is independently distributed over time and across forward maturities, and indepen-
dent of the true log forward Libor rate ln L(t, Ti)

ln L∗(t, Ti) = ln L(t, Ti) + εi(t), E
(
εi(t)

) = 0, i = 1, . . . , N − 1. (14)

We impose a very simple structure on the measurement error variance

V
(
εi(t)

)= σ 2
ε , i = 1, . . . , N − 1,

Corr
(
εi(t), εj (t)

)= 0, i, j = 1, . . . , N − 1, i �= j.
(15)

This way, the moment restrictions for variances and covariances are now given by

V
(
	 ln L∗

i (t)
) = σ(Ti − t)2	t + 2σ 2

ε , i = 1, . . . , N − 1,

Cov
(
	 ln L∗

i (t),	 ln L∗
j (t)

) = ρ(Ti − t, Tj − t)σ (Ti − t)σ (Tj − t)	t,

i, j = 1, . . . , N − 1.

(16)

By approximation, the measurement error variance of the forward Libor rates does not
enter the moment restrictions for caps and swaptions.14 Thus, by combining the forward
Libor rate moment restrictions and the cap and swaption restrictions, the measurement
error variance can be identified.

Using these modified moment restrictions in (16) and the moment restrictions for caps
and swaptions, we re-estimate the covariance matrix specification (i.e., using joint esti-
mation). It turns out that the estimate for the measurement error variance is given by a
corner solution where σε = 0. Thus, including some measurement error on the forward
Libor rates only decreases the fit of the moment restrictions. The reason for this is the
following. Consider the interest rate moments first. Starting from the parameter estimates
without measurement error, adding measurement error increases the total variance of for-
ward Libor rates. Figure 4 shows that, without measurement error, the jointly estimated
covariance matrix already yields interest rate variances that are higher than realized vari-
ances, and adding measurement error only increases this differences. Of course, one could
try to lower the underlying variances of the model (i.e., σ(Ti − t)), to compensate for this
effect, but this would lead to lower cap Black volatilities, since cap Black volatilites are
not influenced by interest rate measurement error. Since caps are already underpriced in
case of joint estimation and no measurement error, this also decreases the fit. Therefore,
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the best fit is obtained when the measurement error variance is set equal to zero. Since we
argued above that it is not unlikely that there is some measurement error in the forward
Libor rate data, these estimation results only increase the puzzling difference between cap
and swaption information and the information in term structure data.15

A second possible explanation for the discrepancy between interest rate and option data
is the fact that some of the options used for estimation have maturity dates that exceed the
final date of our interest rate sample (June 2000).16 For example, a 10-year caplet contains
information on the volatility of the 3-month forward rate over 1995 to 2005. This may
impact our results if market participants expect volatility to increase over the 2001–2005
period. Therefore, we re-run our option-implied estimation using only options for which
all maturity dates are within our interest rate sample period. This leaves us with 9 options:
the 1-year cap, and all 3-month and 1-year swaptions. Since our model in (7) and (8)
contains 9 parameters, we obtain essentially a perfect fit of the moment restrictions for
these instruments. This implies that, to compare the option-implied and interest-rate-based
option prices, we can use Figures 2 and 3 to compare the average Black volatilities in the
data (fitted perfectly by option-based estimation), with the Black volatilities implied by
interest-rate-based estimation. This shows again a clear difference between option-based
and interest-rate-based prices, and in 7 out of 9 cases interest-rate-based estimation implies
too low prices for the options. In Figure 11 we present the option-implied correlation
matrix in case of this subset estimation. This matrix is quite similar to the option-implied

Figure 11. Option based correlation matrix: subset of moments. The figure presents results for option-based
estimation with a subset of option moment conditions. Only caps and swaptions with 3-month and 1-year option
maturities are included. The figure graphs the correlations between forward Libor rate changes of different
maturities, as implied by the correlation parameterization in Equation (8) and option-based estimation for the
described subset.
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matrix in Figure 9 that is based on all option data, and quite different from the interest-
rate-based correlation matrix.

Finally, another possible explanation for our results is that the lognormal distribution
for forward Libor rates is not appropriate. Although our analysis is based on at-the-money
options, which may not be too sensitive to misspecification of the tail of the distribution, we
have performed interest-rate based estimation for a market model with normally distributed
forward Libor rates. The results, available on request, are qualitatively and quantitatively
very similar to the results for the lognormal model.

4. Summary and Conclusions

In this paper, we examine whether the information in cap and swaption prices on interest
rate variances and correlations is consistent with realized movements of the interest rate
term structure. We use lognormal market models for forward Libor rates to invert cap
and swaption prices to an interest rate covariance matrix, using a full-factor model with
a flexible parameterization for this covariance matrix. We show that this model performs
better than a standard three-factor model.

We document clear inconsistencies between the option and interest rate data. Both the
option-implied and realized interest rate variances and the corresponding correlations dif-
fer. If one uses interest rate data for estimation, the resulting option prices are much lower
than the observed option prices. Especially for caps, these differences are economically
large. For some caps the fitting error is almost 3 Black volatility points, averaged over the
1995–1999 period. These results are particularly striking given that caps and swaptions
are subject to some counterparty risk. The presence of counterparty default risk will lower
option prices, to compensate for the risk that option payoffs are not received, so that the
high option prices in our sample are even more puzzling.

A first possible explanation for our results is a peso-problem interpretation: option prices
incorporated the (small) possibility of large interest rate movements, which did not occur
and are, therefore, not observed in the interest rate data. A second possible explanation is
the presence of transaction costs on the underlying assets. In the OTC market for caps and
swaptions, banks typically sell options to other institutions, and then hedge the obtained
risk exposure. If banks cannot perfectly hedge the option price risk due to the presence
of transaction costs, they may require a premium for this residual risk. Related to this is
the presence of supply and demand imbalances in the cap and swaption markets (Rebon-
ato, 2003). A third possible explanation is the fact that our data consist of option price
quotes, and not transaction prices. This may explain some of the mispricing of options
when using interest rate data, but it seems less likely that the large and systematic mis-
pricing is caused by this effect. Finally, a possible explanation for our results is that bond
and swap markets are incomplete. Our results are based on the assumption that the market
defined by the underlying securities is complete. In an incomplete market, generated for
example by stochastic volatility processes for forward Libor rates, the volatility process un-
der the true probability measure can differ from the volatility process under an equivalent
martingale measure. For example, in the Heston (1993) model, the conditional variance
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(over a discrete-time interval) is not the same under the true and risk-neutral measure if
volatility risk is priced. In particular, if the volatility risk premium is negative, the con-
ditional variance is on average higher under the risk-neutral measure than under the true
probability measure. This may be an explanation for the apparent inconsistencies found
in this paper. Bakshi and Kapadia (2003) provide evidence for a negative volatility risk
premium in equity options. As an alternative to stochastic volatility, (priced) jump risk
might be another candidate to explain our findings. For the bond market, the current evi-
dence on market completeness is inconclusive. Collin-Dufresne and Goldstein (2002) and
Heiddari and Wu (2001) conclude that bond markets are incomplete, whereas Fan, Gupta,
and Ritchken (2003) conclude that swaptions can be hedged well using bonds only. Future
research has to show whether one of the abovementioned explanations can indeed help to
understand the direction and size of the discrepancies that are reported in this paper.

Notes

1. We use the cap prices, for which an exact analytical formula exists, as control variates.
2. We have experimented with other parsimonious specifications for the volatility structure, such as the spec-

ification of Moraleda and Vorst (1997), but the specification in (7) provides the best fit of both option and
interest rate data.

3. Rebonato (1999) and Schoenmakers and Coffey (2003) propose other specifications for correlation structures.
4. The instantaneous covariance matrix of the Brownian motions has to be positive definite. This restriction is

imposed when estimating the model parameters.
5. Our initial dataset contains 56 swaptions. We use a subset of 11 swaptions in order to avoid multi-collinearity.
6. To perform GMM on variance and covariance restrictions, we add auxiliary moment restrictions of the form

E(	 ln Li(t)) = αi , i = 1, . . . , N − 1, where the αi ’s are free coefficients that are estimated along with the
other parameters. Even if the true means (i.e., the αi ’s) are equal to zero, which would be the case if forward
Libor rates are stationary, Cochrane (2001) notes that, in small samples, better estimates are obtained if one
uses variances and covariances instead of uncentered second moments. In our case, the sample means are
very small relative to the variance of the forward Libor rates, so that imposing that the αi ’s are equal to zero
would hardly affect the GMM parameter estimates.

7. This expectation is taken under the true probability measure, since the option prices are observed under this
measure. Of course, to calculate the option prices implied by the model, one uses an equivalent martingale
measure.

8. We thank an anonymous referee for this suggestion.
9. We use the method of Newey and West (1987) to correct this covariance matrix for heteroskedasticity and

autocorrelation.
10. The near-singular covariance matrix of the moment restrictions also causes the GMM J -statistic, that can be

used to jointly test the overidentifying restrictions, to be very large for all models that we estimate. Therefore,
to calculate the inverse of this covariance matrix of the J -statistic we use an eigenvector decomposition of
this covariance matrix. The (approximate) inverse of the covariance matrix is calculated using only those
eigenvectors whose eigenvalues sum up to more than 99% of the total sum of eigenvalues. In case of the
variance and covariance moment restrictions, we exploit the fact that the model implies that the changes in
log-forward interest rates are normally distributed. More precisely, let V be the estimated covariance matrix
of the normally distributed log-forward Libor rate changes of different maturities. Then the covariance matrix
of the sample counterparts of the variance and covariance moment restrictions is equal to 2V ⊗V/T , where T

is the number of observations. The eigenvector decomposition is applied to V . Besides a joint test of moment
restrictions, we also report t-values for individual moment restrictions, that are unaffected by the correlations
across moment restrictions and the eigenvector decomposition.
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11. (Flesaker, 1993; Amin and Morton, 1994; Amin and Ng, 1997; Fan, Gupta, and Ritchken, 2001; Gupta and
Subrahmanyam, 2001; De Jong, Driessen, and Pelsser, 2001; Driessen, Klaassen, and Melenberg, 2003)

12. In case of interest-rate based estimation and joint estimation the full-factor model also outperforms the three-
factor model. These results are available on request.

13. Prices for the zero-coupon bonds are directly obtained from the forward Libor rates data. We only observe
the prices of at-the-money caps and swaptions at each trading day. Clearly, an option that is at-the-money at a
particular trading day will not be exactly at-the-money one week later. To be able to calculate the price of an
off-market cap or swaption after one week, we follow Driessen, Klaassen, and Melenberg (2003) and assume
that there is no implied Black volatility smile, i.e., we assume that the observed implied Black volatility for
a cap or a swaption is the same for all strike rates.

14. This depends on the dependence of the LMM Black volatility IVC,LMM(t, Ti ) on the underlying forward
Libor rates. If this dependence would be linear, the presence of measurement error in the forward Libor
rates would not change the unconditional expectation of IVC,LMM(t, Ti ) . In reality, this dependence is not
linear, so that the expectation of IVC,LMM(t, Ti ) will depend on the variance of the measurement error in the
forward Libor rates (and higher-order moments of the measurement error distribution). A Taylor expansion
shows that, for at-the-money-forward caps and swaptions, this is a second order effect, and we will therefore
neglect this effect when estimating the model.

15. We have also analyzed a more sophisticated measurement error structure, where we allowed the measurement
error variance to depend on the forward maturity and also allowed for correlation between the measurement
errors across forward maturities. The results remain the same: the best fit is obtained if all measurement error
variances are equal to zero.

16. We thank an anonymous referee for this suggestion.
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