3,013 research outputs found

    Bayesian Inference of Recursive Sequences of Group Activities from Tracks

    Full text link
    We present a probabilistic generative model for inferring a description of coordinated, recursively structured group activities at multiple levels of temporal granularity based on observations of individuals' trajectories. The model accommodates: (1) hierarchically structured groups, (2) activities that are temporally and compositionally recursive, (3) component roles assigning different subactivity dynamics to subgroups of participants, and (4) a nonparametric Gaussian Process model of trajectories. We present an MCMC sampling framework for performing joint inference over recursive activity descriptions and assignment of trajectories to groups, integrating out continuous parameters. We demonstrate the model's expressive power in several simulated and complex real-world scenarios from the VIRAT and UCLA Aerial Event video data sets.Comment: 10 pages, 6 figures, in Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI'16), Phoenix, AZ, 201

    CERN: Confidence-Energy Recurrent Network for Group Activity Recognition

    Full text link
    This work is about recognizing human activities occurring in videos at distinct semantic levels, including individual actions, interactions, and group activities. The recognition is realized using a two-level hierarchy of Long Short-Term Memory (LSTM) networks, forming a feed-forward deep architecture, which can be trained end-to-end. In comparison with existing architectures of LSTMs, we make two key contributions giving the name to our approach as Confidence-Energy Recurrent Network -- CERN. First, instead of using the common softmax layer for prediction, we specify a novel energy layer (EL) for estimating the energy of our predictions. Second, rather than finding the common minimum-energy class assignment, which may be numerically unstable under uncertainty, we specify that the EL additionally computes the p-values of the solutions, and in this way estimates the most confident energy minimum. The evaluation on the Collective Activity and Volleyball datasets demonstrates: (i) advantages of our two contributions relative to the common softmax and energy-minimization formulations and (ii) a superior performance relative to the state-of-the-art approaches.Comment: Accepted to IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 201

    Learning Social Affordance Grammar from Videos: Transferring Human Interactions to Human-Robot Interactions

    Full text link
    In this paper, we present a general framework for learning social affordance grammar as a spatiotemporal AND-OR graph (ST-AOG) from RGB-D videos of human interactions, and transfer the grammar to humanoids to enable a real-time motion inference for human-robot interaction (HRI). Based on Gibbs sampling, our weakly supervised grammar learning can automatically construct a hierarchical representation of an interaction with long-term joint sub-tasks of both agents and short term atomic actions of individual agents. Based on a new RGB-D video dataset with rich instances of human interactions, our experiments of Baxter simulation, human evaluation, and real Baxter test demonstrate that the model learned from limited training data successfully generates human-like behaviors in unseen scenarios and outperforms both baselines.Comment: The 2017 IEEE International Conference on Robotics and Automation (ICRA
    • …
    corecore