720 research outputs found

    MIMO Networks: the Effects of Interference

    Full text link
    Multiple-input/multiple-output (MIMO) systems promise enormous capacity increase and are being considered as one of the key technologies for future wireless networks. However, the decrease in capacity due to the presence of interferers in MIMO networks is not well understood. In this paper, we develop an analytical framework to characterize the capacity of MIMO communication systems in the presence of multiple MIMO co-channel interferers and noise. We consider the situation in which transmitters have no information about the channel and all links undergo Rayleigh fading. We first generalize the known determinant representation of hypergeometric functions with matrix arguments to the case when the argument matrices have eigenvalues of arbitrary multiplicity. This enables the derivation of the distribution of the eigenvalues of Gaussian quadratic forms and Wishart matrices with arbitrary correlation, with application to both single user and multiuser MIMO systems. In particular, we derive the ergodic mutual information for MIMO systems in the presence of multiple MIMO interferers. Our analysis is valid for any number of interferers, each with arbitrary number of antennas having possibly unequal power levels. This framework, therefore, accommodates the study of distributed MIMO systems and accounts for different positions of the MIMO interferers.Comment: Submitted to IEEE Trans. on Info. Theor

    On the probability that all eigenvalues of Gaussian, Wishart, and double Wishart random matrices lie within an interval

    Full text link
    We derive the probability that all eigenvalues of a random matrix M\bf M lie within an arbitrary interval [a,b][a,b], ψ(a,b)Pr{aλmin(M),λmax(M)b}\psi(a,b)\triangleq\Pr\{a\leq\lambda_{\min}({\bf M}), \lambda_{\max}({\bf M})\leq b\}, when M\bf M is a real or complex finite dimensional Wishart, double Wishart, or Gaussian symmetric/Hermitian matrix. We give efficient recursive formulas allowing the exact evaluation of ψ(a,b)\psi(a,b) for Wishart matrices, even with large number of variates and degrees of freedom. We also prove that the probability that all eigenvalues are within the limiting spectral support (given by the Mar{\v{c}}enko-Pastur or the semicircle laws) tends for large dimensions to the universal values 0.69210.6921 and 0.93970.9397 for the real and complex cases, respectively. Applications include improved bounds for the probability that a Gaussian measurement matrix has a given restricted isometry constant in compressed sensing.Comment: IEEE Transactions on Information Theory, 201

    Large deviations of the extreme eigenvalues of random deformations of matrices

    Get PDF
    Consider a real diagonal deterministic matrix XnX_n of size nn with spectral measure converging to a compactly supported probability measure. We perturb this matrix by adding a random finite rank matrix, with delocalized eigenvectors. We show that the joint law of the extreme eigenvalues of the perturbed model satisfies a large deviation principle in the scale nn, with a good rate function given by a variational formula. We tackle both cases when the extreme eigenvalues of XnX_n converge to the edges of the support of the limiting measure and when we allow some eigenvalues of XnX_n, that we call outliers, to converge out of the bulk. We can also generalise our results to the case when XnX_n is random, with law proportional to enTraceV(X)X,e^{- n Trace V(X)} X, for VV growing fast enough at infinity and any perturbation of finite rank.Comment: 44 page
    corecore