2,101,670 research outputs found
Tube-to-header joint for bimetallic construction
Design advantages of bimetallic construction enables an all-welded bimetallic joint to be made from the accessible header side of the tube-to-header joint. In the two-piece header design the weld joints completely seal the tube-header plate crevice and prevent crevice and stringer corrosion
Stamina of a non-gasketed flange joint under combined internal pressure and axial loading
The performance of a bolted flange joint is characterized mainly by its 'strength' and 'sealing capability'. A number of numerical and experimental studies have been conducted to study these characteristics under internal pressure loading conditions alone. However, limited work is found in the literature under conditions of combined internal pressure and axial loading. The effect of external, axial loading pressure being unknown, the optimal performance of the bolted flange joint cannot be achieved. Current design codes do not address the effects of axial loading on structural integrity and sealing ability. To study joint strength and sealing capability under combined loading conditions, an extensive experimental and numerical study of a non-gasketed flange joint was carried out. Actual joint load capacity was determined at both design and test stages with the maximum external axial loading that can be applied for safe joint performance. Experimental and numerical results have been compared and overall joint performance and behaviour is discussed in detail
Stamina of a non-gasketed flange joint under combined internal pressure, axial and bending loading : an experimental study
The performance of a bolted flange joint is characterized mainly by its 'strength' and 'sealing capability'. A number of numerical and experimental studies have been conducted to study these characteristics under internal pressure loading conditions alone. However, limited work is found in the literature under conditions of combined internal pressure and axial loading. The effect of external, axial loading pressure being unknown, the optimal performance of the bolted flange joint cannot be achieved. Current design codes do not address the effects of axial loading on structural integrity and sealing ability. To study joint strength and sealing capability under combined loading conditions, an extensive experimental and numerical study of a non¬gasketed flange joint was carried out. Actual joint load capacity was determined at both design and test stages with the maximum external axial loading that can be applied for safe joint performance. Experimental and numerical results have been compared and overall joint performance and behaviour is discussed in detail
Structural optimization of an alternate design for the space shuttle solid rocket booster field joint
A structural optimization procedure is used to determine the shape of an alternate design for the shuttle solid rocket booster field joint. In contrast to the tang and clevis design of the existing joint, this alternate design consists of two flanges bolted together. Configurations with 150 studs of 1 1/8 in. diameter and 135 studs of 1 3/16 in. diameter are considered. Using a nonlinear programming procedure, the joint weight is minimized under constraints on either von Mises or maximum normal stresses, joint opening and geometry. The procedure solves the design problem by replacing it by a sequence of approximate (convex) subproblems; the pattern of contact between the joint halves is determined every few cycles by a nonliner displacement analysis. The minimum weight design has 135 studs of 1 3/16 in. diameter and is designed under constraints on normal stresses. It weighs 1144 lb per joint more than the current tang and clevis design
Design of a tribological ball joint tester
The automotive industry uses ball joints in the suspension systems of cars. These ball joints are subject to various forces and relative displacements which inevitably invoke wear. The same happens in other applications that use ball joints, for example human hip joints. Nowadays there are only a few test rigs that can correctly simulate wear in these joints or test the joints according to a realistic loading cycle. This paper focuses on the design of a test rig that allows parametric research on these ball joints in order to increase the performance.</jats:p
Iterative joint design of source codes and multiresolution channel codes
We propose an iterative design algorithm for jointly optimizing source and channel codes. The joint design combines channel-optimized vector quantization (COVQ) for the source code with rate-compatible punctured convolutional (RCPC) coding for the channel code. Our objective is to minimize the average end-to-end distortion. For a given channel SNR and transmission rate, our joint source and channel code design achieves an optimal allocation of bits between the source and channel coders. This optimal allocation can reduce distortion by up to 6 dB over suboptimal allocations for the source data set considered. We also compare the distortion of our joint iterative design with that of two suboptimal design techniques: COVQ optimized for a given channel bit-error-probability, and RCPC channel coding optimized for a given vector quantizer. We conclude by relaxing the fixed transmission rate constraint and jointly optimizing the transmission rate, source code, and channel code
Central spar and module joint Patent
Design and development of module joint clamping device for application to solar array constructio
On Energy Efficient Hierarchical Cross-Layer Design: Joint Power Control and Routing for Ad Hoc Networks
In this paper, a hierarchical cross-layer design approach is proposed to
increase energy efficiency in ad hoc networks through joint adaptation of
nodes' transmitting powers and route selection. The design maintains the
advantages of the classic OSI model, while accounting for the cross-coupling
between layers, through information sharing. The proposed joint power control
and routing algorithm is shown to increase significantly the overall energy
efficiency of the network, at the expense of a moderate increase in complexity.
Performance enhancement of the joint design using multiuser detection is also
investigated, and it is shown that the use of multiuser detection can increase
the capacity of the ad hoc network significantly for a given level of energy
consumption.Comment: To appear in the EURASIP Journal on Wireless Communications and
Networking, Special Issue on Wireless Mobile Ad Hoc Network
- …
