454 research outputs found

    Bayesian demosaicing using Gaussian scale mixture priors with local adaptivity in the dual tree complex wavelet packet transform domain

    Get PDF
    In digital cameras and mobile phones, there is an ongoing trend to increase the image resolution, decrease the sensor size and to use lower exposure times. Because smaller sensors inherently lead to more noise and a worse spatial resolution, digital post-processing techniques are required to resolve many of the artifacts. Color filter arrays (CFAs), which use alternating patterns of color filters, are very popular because of price and power consumption reasons. However, color filter arrays require the use of a post-processing technique such as demosaicing to recover full resolution RGB images. Recently, there has been some interest in techniques that jointly perform the demosaicing and denoising. This has the advantage that the demosaicing and denoising can be performed optimally (e.g. in the MSE sense) for the considered noise model, while avoiding artifacts introduced when using demosaicing and denoising sequentially. ABSTRACT In this paper, we will continue the research line of the wavelet-based demosaicing techniques. These approaches are computationally simple and very suited for combination with denoising. Therefore, we will derive Bayesian Minimum Squared Error (MMSE) joint demosaicing and denoising rules in the complex wavelet packet domain, taking local adaptivity into account. As an image model, we will use Gaussian Scale Mixtures, thereby taking advantage of the directionality of the complex wavelets. Our results show that this technique is well capable of reconstructing fine details in the image, while removing all of the noise, at a relatively low computational cost. In particular, the complete reconstruction (including color correction, white balancing etc) of a 12 megapixel RAW image takes 3.5 sec on a recent mid-range GPU

    Rethinking the Pipeline of Demosaicing, Denoising and Super-Resolution

    Full text link
    Incomplete color sampling, noise degradation, and limited resolution are the three key problems that are unavoidable in modern camera systems. Demosaicing (DM), denoising (DN), and super-resolution (SR) are core components in a digital image processing pipeline to overcome the three problems above, respectively. Although each of these problems has been studied actively, the mixture problem of DM, DN, and SR, which is a higher practical value, lacks enough attention. Such a mixture problem is usually solved by a sequential solution (applying each method independently in a fixed order: DM →\to DN →\to SR), or is simply tackled by an end-to-end network without enough analysis into interactions among tasks, resulting in an undesired performance drop in the final image quality. In this paper, we rethink the mixture problem from a holistic perspective and propose a new image processing pipeline: DN →\to SR →\to DM. Extensive experiments show that simply modifying the usual sequential solution by leveraging our proposed pipeline could enhance the image quality by a large margin. We further adopt the proposed pipeline into an end-to-end network, and present Trinity Enhancement Network (TENet). Quantitative and qualitative experiments demonstrate the superiority of our TENet to the state-of-the-art. Besides, we notice the literature lacks a full color sampled dataset. To this end, we contribute a new high-quality full color sampled real-world dataset, namely PixelShift200. Our experiments show the benefit of the proposed PixelShift200 dataset for raw image processing.Comment: Code is available at: https://github.com/guochengqian/TENe

    Content Authentication for Neural Imaging Pipelines: End-to-end Optimization of Photo Provenance in Complex Distribution Channels

    Full text link
    Forensic analysis of digital photo provenance relies on intrinsic traces left in the photograph at the time of its acquisition. Such analysis becomes unreliable after heavy post-processing, such as down-sampling and re-compression applied upon distribution in the Web. This paper explores end-to-end optimization of the entire image acquisition and distribution workflow to facilitate reliable forensic analysis at the end of the distribution channel. We demonstrate that neural imaging pipelines can be trained to replace the internals of digital cameras, and jointly optimized for high-fidelity photo development and reliable provenance analysis. In our experiments, the proposed approach increased image manipulation detection accuracy from 45% to over 90%. The findings encourage further research towards building more reliable imaging pipelines with explicit provenance-guaranteeing properties.Comment: Camera ready + supplement, CVPR'1

    Joint Demosaicing and Denoising with Double Deep Image Priors

    Full text link
    Demosaicing and denoising of RAW images are crucial steps in the processing pipeline of modern digital cameras. As only a third of the color information required to produce a digital image is captured by the camera sensor, the process of demosaicing is inherently ill-posed. The presence of noise further exacerbates this problem. Performing these two steps sequentially may distort the content of the captured RAW images and accumulate errors from one step to another. Recent deep neural-network-based approaches have shown the effectiveness of joint demosaicing and denoising to mitigate such challenges. However, these methods typically require a large number of training samples and do not generalize well to different types and intensities of noise. In this paper, we propose a novel joint demosaicing and denoising method, dubbed JDD-DoubleDIP, which operates directly on a single RAW image without requiring any training data. We validate the effectiveness of our method on two popular datasets -- Kodak and McMaster -- with various noises and noise intensities. The experimental results show that our method consistently outperforms other compared methods in terms of PSNR, SSIM, and qualitative visual perception

    Deep Mean-Shift Priors for Image Restoration

    Full text link
    In this paper we introduce a natural image prior that directly represents a Gaussian-smoothed version of the natural image distribution. We include our prior in a formulation of image restoration as a Bayes estimator that also allows us to solve noise-blind image restoration problems. We show that the gradient of our prior corresponds to the mean-shift vector on the natural image distribution. In addition, we learn the mean-shift vector field using denoising autoencoders, and use it in a gradient descent approach to perform Bayes risk minimization. We demonstrate competitive results for noise-blind deblurring, super-resolution, and demosaicing.Comment: NIPS 201
    • …
    corecore