1,798 research outputs found

    Large-System Analysis of Multiuser Detection with an Unknown Number of Users: A High-SNR Approach

    Full text link
    We analyze multiuser detection under the assumption that the number of users accessing the channel is unknown by the receiver. In this environment, users' activity must be estimated along with any other parameters such as data, power, and location. Our main goal is to determine the performance loss caused by the need for estimating the identities of active users, which are not known a priori. To prevent a loss of optimality, we assume that identities and data are estimated jointly, rather than in two separate steps. We examine the performance of multiuser detectors when the number of potential users is large. Statistical-physics methodologies are used to determine the macroscopic performance of the detector in terms of its multiuser efficiency. Special attention is paid to the fixed-point equation whose solution yields the multiuser efficiency of the optimal (maximum a posteriori) detector in the large signal-to-noise ratio regime. Our analysis yields closed-form approximate bounds to the minimum mean-squared error in this regime. These illustrate the set of solutions of the fixed-point equation, and their relationship with the maximum system load. Next, we study the maximum load that the detector can support for a given quality of service (specified by error probability).Comment: to appear in IEEE Transactions on Information Theor

    Infinite Factorial Finite State Machine for Blind Multiuser Channel Estimation

    Full text link
    New communication standards need to deal with machine-to-machine communications, in which users may start or stop transmitting at any time in an asynchronous manner. Thus, the number of users is an unknown and time-varying parameter that needs to be accurately estimated in order to properly recover the symbols transmitted by all users in the system. In this paper, we address the problem of joint channel parameter and data estimation in a multiuser communication channel in which the number of transmitters is not known. For that purpose, we develop the infinite factorial finite state machine model, a Bayesian nonparametric model based on the Markov Indian buffet that allows for an unbounded number of transmitters with arbitrary channel length. We propose an inference algorithm that makes use of slice sampling and particle Gibbs with ancestor sampling. Our approach is fully blind as it does not require a prior channel estimation step, prior knowledge of the number of transmitters, or any signaling information. Our experimental results, loosely based on the LTE random access channel, show that the proposed approach can effectively recover the data-generating process for a wide range of scenarios, with varying number of transmitters, number of receivers, constellation order, channel length, and signal-to-noise ratio.Comment: 15 pages, 15 figure

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces

    Multiuser detection in a dynamic environment Part I: User identification and data detection

    Full text link
    In random-access communication systems, the number of active users varies with time, and has considerable bearing on receiver's performance. Thus, techniques aimed at identifying not only the information transmitted, but also that number, play a central role in those systems. An example of application of these techniques can be found in multiuser detection (MUD). In typical MUD analyses, receivers are based on the assumption that the number of active users is constant and known at the receiver, and coincides with the maximum number of users entitled to access the system. This assumption is often overly pessimistic, since many users might be inactive at any given time, and detection under the assumption of a number of users larger than the real one may impair performance. The main goal of this paper is to introduce a general approach to the problem of identifying active users and estimating their parameters and data in a random-access system where users are continuously entering and leaving the system. The tool whose use we advocate is Random-Set Theory: applying this, we derive optimum receivers in an environment where the set of transmitters comprises an unknown number of elements. In addition, we can derive Bayesian-filter equations which describe the evolution with time of the a posteriori probability density of the unknown user parameters, and use this density to derive optimum detectors. In this paper we restrict ourselves to interferer identification and data detection, while in a companion paper we shall examine the more complex problem of estimating users' parameters.Comment: To be published on IEEE Transactions on Information Theor

    Compressive Random Access Using A Common Overloaded Control Channel

    Full text link
    We introduce a "one shot" random access procedure where users can send a message without a priori synchronizing with the network. In this procedure a common overloaded control channel is used to jointly detect sparse user activity and sparse channel profiles. The detected information is subsequently used to demodulate the data in dedicated frequency slots. We analyze the system theoretically and provide a link between achievable rates and standard compressing sensing estimates in terms of explicit expressions and scaling laws. Finally, we support our findings with simulations in an LTE-A-like setting allowing "one shot" sparse random access of 100 users in 1ms.Comment: 6 pages, 3 figures, published at Globecom 201
    • …
    corecore