2 research outputs found

    Explaining the influence of prior knowledge on POMCP policies

    Get PDF
    Partially Observable Monte Carlo Planning is a recently proposed online planning algorithm which makes use of Monte Carlo Tree Search to solve Partially Observable Monte Carlo Decision Processes. This solver is very successful because of its capability to scale to large uncertain environments, a very important property for current real-world planning problems. In this work we propose three main contributions related to POMCP usage and interpretability. First, we introduce a new planning problem related to mobile robot collision avoidance in paths with uncertain segment difficulties, and we show how POMCP performance in this context can take advantage of prior knowledge about segment difficulty relationships. This problem has direct real-world applications, such as, safety management in industrial environments where human-robot interaction is a crucial issue. Then, we present an experimental analysis about the relationships between prior knowledge provided to the algorithm and performance improvement, showing that in our case study prior knowledge affects two main properties, namely, the distance between the belief and the real state, and the mutual information between segment difficulty and action taken in the segment. This analysis aims to improve POMCP explainability, following the line of recently proposed eXplainable AI and, in particular, eXplainable planning. Finally, we analyze results on a synthetic case study and show how the proposed measures can improve the understanding about internal planning mechanisms

    Joint Vision-Based Navigation, Control and Obstacle Avoidance for UAVs in Dynamic Environments

    No full text
    This work addresses the problem of coupling vision-based navigation systems for Unmanned Aerial Vehicles (UAVs) with robust obstacle avoidance capabilities. The former problem is solved by maximizing the visibility of the points of interest, while the latter is modeled by means of ellipsoidal repulsive areas. The whole problem is transcribed into an Optimal Control Problem (OCP), and solved in a few milliseconds by leveraging state-of-the-art numerical optimization. The resulting trajectories are well suited for reaching the specified goal location while avoiding obstacles with a safety margin and minimizing the probability of losing the route with the target of interest. Combining this technique with a proper ellipsoid shaping (i.e., by augmenting the shape proportionally with the obstacle velocity or with the obstacle detection uncertainties) results in a robust obstacle avoidance behavior. We validate our approach within extensive simulated experiments that show effective capabilities to satisfy all the constraints even in challenging conditions. We release with this paper the open source implementation
    corecore