4 research outputs found

    A Graph-Neural-Network-Based Social Network Recommendation Algorithm Using High-Order Neighbor Information

    Get PDF
    Social-network-based recommendation algorithms leverage rich social network information to alleviate the problem of data sparsity and boost the recommendation performance. However, traditional social-network-based recommendation algorithms ignore high-order collaborative signals or only consider the first-order collaborative signal when learning users’ and items’ latent representations, resulting in suboptimal recommendation performance. In this paper, we propose a graph neural network (GNN)-based social recommendation model that utilizes the GNN framework to capture high-order collaborative signals in the process of learning the latent representations of users and items. Specifically, we formulate the representations of entities, i.e., users and items, by stacking multiple embedding propagation layers to recursively aggregate multi-hop neighborhood information on both the user–item interaction graph and the social network graph. Hence, the collaborative signals hidden in both the user–item interaction graph and the social network graph are explicitly injected into the final representations of entities. Moreover, we ease the training process of the proposed GNN-based social recommendation model and alleviate overfitting by adopting a lightweight GNN framework that only retains the neighborhood aggregation component and abandons the feature transformation and nonlinear activation components. The experimental results on two real-world datasets show that our proposed GNN-based social recommendation method outperforms the state-of-the-art recommendation algorithms

    TSCMF: Temporal and social collective matrix factorization model for recommender systems

    Get PDF
    In real-world recommender systems, user preferences are dynamic and typically change over time. Capturing the temporal dynamics of user preferences is essential to design an efficient personalized recommender system and has recently attracted significant attention. In this paper, we consider user preferences change individually over time. Moreover, based on the intuition that social influence can affect the users’ preferences in a recommender system, we propose a Temporal and Social CollectiveMatrix Factorization model called TSCMF for recommendation.We jointly factorize the users’ rating information and social trust information in a collective matrix factorization framework by introducing a joint objective function. We model user dynamics into this framework by learning a transition matrix of user preferences between two successive time periods for each individual user. We present an efficient optimization algorithm based on stochastic gradient descent for solving the objective function. The experiments on a real-world dataset illustrate that the proposed model outperforms the competitive methods.Moreover, the complexity analysis demonstrates that the proposed model can be scaled up to large datasets

    Towards Time-Aware Context-Aware Deep Trust Prediction in Online Social Networks

    Full text link
    Trust can be defined as a measure to determine which source of information is reliable and with whom we should share or from whom we should accept information. There are several applications for trust in Online Social Networks (OSNs), including social spammer detection, fake news detection, retweet behaviour detection and recommender systems. Trust prediction is the process of predicting a new trust relation between two users who are not currently connected. In applications of trust, trust relations among users need to be predicted. This process faces many challenges, such as the sparsity of user-specified trust relations, the context-awareness of trust and changes in trust values over time. In this dissertation, we analyse the state-of-the-art in pair-wise trust prediction models in OSNs. We discuss three main challenges in this domain and present novel trust prediction approaches to address them. We first focus on proposing a low-rank representation of users that incorporates users' personality traits as additional information. Then, we propose a set of context-aware trust prediction models. Finally, by considering the time-dependency of trust relations, we propose a dynamic deep trust prediction approach. We design and implement five pair-wise trust prediction approaches and evaluate them with real-world datasets collected from OSNs. The experimental results demonstrate the effectiveness of our approaches compared to other state-of-the-art pair-wise trust prediction models.Comment: 158 pages, 20 figures, and 19 tables. This is my PhD thesis in Macquarie University, Sydney, Australi
    corecore