9,821 research outputs found

    User-Base Station Association in HetSNets: Complexity and Efficient Algorithms

    Get PDF
    This work considers the problem of user association to small-cell base stations (SBSs) in a heterogeneous and small-cell network (HetSNet). Two optimization problems are investigated, which are maximizing the set of associated users to the SBSs (the unweighted problem) and maximizing the set of weighted associated users to the SBSs (the weighted problem), under signal-to-interference-plus-noise ratio (SINR) constraints. Both problems are formulated as linear integer programs. The weighted problem is known to be NP-hard and, in this paper, the unweighted problem is proved to be NP-hard as well. Therefore, this paper develops two heuristic polynomial-time algorithms to solve both problems. The computational complexity of the proposed algorithms is evaluated and is shown to be far more efficient than the complexity of the optimal brute-force (BF) algorithm. Moreover, the paper benchmarks the performance of the proposed algorithms against the BF algorithm, the branch-and-bound (B\&B) algorithm and standard algorithms, through numerical simulations. The results demonstrate the close-to-optimal performance of the proposed algorithms. They also show that the weighted problem can be solved to provide solutions that are fair between users or to balance the load among SBSs

    Harmonized Cellular and Distributed Massive MIMO: Load Balancing and Scheduling

    Full text link
    Multi-tier networks with large-array base stations (BSs) that are able to operate in the "massive MIMO" regime are envisioned to play a key role in meeting the exploding wireless traffic demands. Operated over small cells with reciprocity-based training, massive MIMO promises large spectral efficiencies per unit area with low overheads. Also, near-optimal user-BS association and resource allocation are possible in cellular massive MIMO HetNets using simple admission control mechanisms and rudimentary BS schedulers, since scheduled user rates can be predicted a priori with massive MIMO. Reciprocity-based training naturally enables coordinated multi-point transmission (CoMP), as each uplink pilot inherently trains antenna arrays at all nearby BSs. In this paper we consider a distributed-MIMO form of CoMP, which improves cell-edge performance without requiring channel state information exchanges among cooperating BSs. We present methods for harmonized operation of distributed and cellular massive MIMO in the downlink that optimize resource allocation at a coarser time scale across the network. We also present scheduling policies at the resource block level which target approaching the optimal allocations. Simulations reveal that the proposed methods can significantly outperform the network-optimized cellular-only massive MIMO operation (i.e., operation without CoMP), especially at the cell edge

    Energy Efficient User Association and Power Allocation in Millimeter Wave Based Ultra Dense Networks with Energy Harvesting Base Stations

    Full text link
    Millimeter wave (mmWave) communication technologies have recently emerged as an attractive solution to meet the exponentially increasing demand on mobile data traffic. Moreover, ultra dense networks (UDNs) combined with mmWave technology are expected to increase both energy efficiency and spectral efficiency. In this paper, user association and power allocation in mmWave based UDNs is considered with attention to load balance constraints, energy harvesting by base stations, user quality of service requirements, energy efficiency, and cross-tier interference limits. The joint user association and power optimization problem is modeled as a mixed-integer programming problem, which is then transformed into a convex optimization problem by relaxing the user association indicator and solved by Lagrangian dual decomposition. An iterative gradient user association and power allocation algorithm is proposed and shown to converge rapidly to an optimal point. The complexity of the proposed algorithm is analyzed and the effectiveness of the proposed scheme compared with existing methods is verified by simulations.Comment: to appear, IEEE Journal on Selected Areas in Communications, 201
    • …
    corecore