19 research outputs found

    Stochastic Adversarial Gradient Embedding for Active Domain Adaptation

    Full text link
    Unsupervised Domain Adaptation (UDA) aims to bridge the gap between a source domain, where labelled data are available, and a target domain only represented with unlabelled data. If domain invariant representations have dramatically improved the adaptability of models, to guarantee their good transferability remains a challenging problem. This paper addresses this problem by using active learning to annotate a small budget of target data. Although this setup, called Active Domain Adaptation (ADA), deviates from UDA's standard setup, a wide range of practical applications are faced with this situation. To this purpose, we introduce \textit{Stochastic Adversarial Gradient Embedding} (SAGE), a framework that makes a triple contribution to ADA. First, we select for annotation target samples that are likely to improve the representations' transferability by measuring the variation, before and after annotation, of the transferability loss gradient. Second, we increase sampling diversity by promoting different gradient directions. Third, we introduce a novel training procedure for actively incorporating target samples when learning invariant representations. SAGE is based on solid theoretical ground and validated on various UDA benchmarks against several baselines. Our empirical investigation demonstrates that SAGE takes the best of uncertainty \textit{vs} diversity samplings and improves representations transferability substantially

    Multi-Domain Active Learning: A Comparative Study

    Full text link
    Building classifiers on multiple domains is a practical problem in the real life. Instead of building classifiers one by one, multi-domain learning (MDL) simultaneously builds classifiers on multiple domains. MDL utilizes the information shared among the domains to improve the performance. As a supervised learning problem, the labeling effort is still high in MDL problems. Usually, this high labeling cost issue could be relieved by using active learning. Thus, it is natural to utilize active learning to reduce the labeling effort in MDL, and we refer this setting as multi-domain active learning (MDAL). However, there are only few works which are built on this setting. And when the researches have to face this problem, there is no off-the-shelf solutions. Under this circumstance, combining the current multi-domain learning models and single-domain active learning strategies might be a preliminary solution for MDAL problem. To find out the potential of this preliminary solution, a comparative study over 5 models and 4 selection strategies is made in this paper. To the best of our knowledge, this is the first work provides the formal definition of MDAL. Besides, this is the first comparative work for MDAL problem. From the results, the Multinomial Adversarial Networks (MAN) model with a simple best vs second best (BvSB) uncertainty strategy shows its superiority in most cases. We take this combination as our off-the-shelf recommendation for the MDAL problem

    UniDA3D: Unified Domain Adaptive 3D Semantic Segmentation Pipeline

    Full text link
    State-of-the-art 3D semantic segmentation models are trained on off-the-shelf public benchmarks, but they will inevitably face the challenge of recognition accuracy drop when these well-trained models are deployed to a new domain. In this paper, we introduce a Unified Domain Adaptive 3D semantic segmentation pipeline (UniDA3D) to enhance the weak generalization ability, and bridge the point distribution gap between domains. Different from previous studies that only focus on a single adaptation task, UniDA3D can tackle several adaptation tasks in 3D segmentation field, by designing a unified source-and-target active sampling strategy, which selects a maximally-informative subset from both source and target domains for effective model adaptation. Besides, benefiting from the rise of multi-modal 2D-3D datasets, UniDA3D investigates the possibility of achieving a multi-modal sampling strategy, by developing a cross-modality feature interaction module that can extract a representative pair of image and point features to achieve a bi-directional image-point feature interaction for safe model adaptation. Experimentally, UniDA3D is verified to be effective in many adaptation tasks including: 1) unsupervised domain adaptation, 2) unsupervised few-shot domain adaptation; 3) active domain adaptation. Their results demonstrate that, by easily coupling UniDA3D with off-the-shelf 3D segmentation baselines, domain generalization ability of these baselines can be enhanced
    corecore