291 research outputs found

    Two-Dimensional Convolutional Recurrent Neural Networks for Speech Activity Detection

    Get PDF
    Speech Activity Detection (SAD) plays an important role in mobile communications and automatic speech recognition (ASR). Developing efficient SAD systems for real-world applications is a challenging task due to the presence of noise. We propose a new approach to SAD where we treat it as a two-dimensional multilabel image classification problem. To classify the audio segments, we compute their Short-time Fourier Transform spectrograms and classify them with a Convolutional Recurrent Neural Network (CRNN), traditionally used in image recognition. Our CRNN uses a sigmoid activation function, max-pooling in the frequency domain, and a convolutional operation as a moving average filter to remove misclassified spikes. On the development set of Task 1 of the 2019 Fearless Steps Challenge, our system achieved a decision cost function (DCF) of 2.89%, a 66.4% improvement over the baseline. Moreover, it achieved a DCF score of 3.318% on the evaluation dataset of the challenge, ranking first among all submissions

    A Review of Deep Learning Techniques for Speech Processing

    Full text link
    The field of speech processing has undergone a transformative shift with the advent of deep learning. The use of multiple processing layers has enabled the creation of models capable of extracting intricate features from speech data. This development has paved the way for unparalleled advancements in speech recognition, text-to-speech synthesis, automatic speech recognition, and emotion recognition, propelling the performance of these tasks to unprecedented heights. The power of deep learning techniques has opened up new avenues for research and innovation in the field of speech processing, with far-reaching implications for a range of industries and applications. This review paper provides a comprehensive overview of the key deep learning models and their applications in speech-processing tasks. We begin by tracing the evolution of speech processing research, from early approaches, such as MFCC and HMM, to more recent advances in deep learning architectures, such as CNNs, RNNs, transformers, conformers, and diffusion models. We categorize the approaches and compare their strengths and weaknesses for solving speech-processing tasks. Furthermore, we extensively cover various speech-processing tasks, datasets, and benchmarks used in the literature and describe how different deep-learning networks have been utilized to tackle these tasks. Additionally, we discuss the challenges and future directions of deep learning in speech processing, including the need for more parameter-efficient, interpretable models and the potential of deep learning for multimodal speech processing. By examining the field's evolution, comparing and contrasting different approaches, and highlighting future directions and challenges, we hope to inspire further research in this exciting and rapidly advancing field

    Language modelling for speaker diarization in telephonic interviews

    Get PDF
    The aim of this paper is to investigate the benefit of combining both language and acoustic modelling for speaker diarization. Although conventional systems only use acoustic features, in some scenarios linguistic data contain high discriminative speaker information, even more reliable than the acoustic ones. In this study we analyze how an appropriate fusion of both kind of features is able to obtain good results in these cases. The proposed system is based on an iterative algorithm where a LSTM network is used as a speaker classifier. The network is fed with character-level word embeddings and a GMM based acoustic score created with the output labels from previous iterations. The presented algorithm has been evaluated in a Call-Center database, which is composed of telephone interview audios. The combination of acoustic features and linguistic content shows a 84.29% improvement in terms of a word-level DER as compared to a HMM/VB baseline system. The results of this study confirms that linguistic content can be efficiently used for some speaker recognition tasks.This work was partially supported by the Spanish Project DeepVoice (TEC2015-69266-P) and by the project PID2019-107579RBI00/ AEI /10.13039/501100011033.Peer ReviewedPostprint (published version

    Convolutional Neural Network Architectures for Gender, Emotional Detection from Speech and Speaker Diarization

    Get PDF
    This paper introduces three system architectures for speaker identification that aim to overcome the limitations of diarization and voice-based biometric systems. Diarization systems utilize unsupervised algorithms to segment audio data based on the time boundaries of utterances, but they do not distinguish individual speakers. On the other hand, voice-based biometric systems can only identify individuals in recordings with a single speaker. Identifying speakers in recordings of natural conversations can be challenging, especially when emotional shifts can alter voice characteristics, making gender identification difficult. To address this issue, the proposed architectures include techniques for gender, emotion, and diarization at either the segment or group level. The evaluation of these architectures utilized two speech databases, namely VoxCeleb and RAVDESS (Ryerson audio-visual database of emotional speech and song) datasets. The findings reveal that the proposed approach outperforms the strategy level in terms of recognition results, despite the real-time processing advantage of the latter. The challenge of identifying multiple speakers engaging in a conversation while considering emotional changes that impact speech is effectively addressed by the proposed architectures. The data indicates that the gender and emotion classification of diarization achieves an accuracy of over 98 percent. These results suggest that the proposed speech-based approach can achieve highly accurate speaker identification

    Data-Driven Representation Learning in Multimodal Feature Fusion

    Get PDF
    abstract: Modern machine learning systems leverage data and features from multiple modalities to gain more predictive power. In most scenarios, the modalities are vastly different and the acquired data are heterogeneous in nature. Consequently, building highly effective fusion algorithms is at the core to achieve improved model robustness and inferencing performance. This dissertation focuses on the representation learning approaches as the fusion strategy. Specifically, the objective is to learn the shared latent representation which jointly exploit the structural information encoded in all modalities, such that a straightforward learning model can be adopted to obtain the prediction. We first consider sensor fusion, a typical multimodal fusion problem critical to building a pervasive computing platform. A systematic fusion technique is described to support both multiple sensors and descriptors for activity recognition. Targeted to learn the optimal combination of kernels, Multiple Kernel Learning (MKL) algorithms have been successfully applied to numerous fusion problems in computer vision etc. Utilizing the MKL formulation, next we describe an auto-context algorithm for learning image context via the fusion with low-level descriptors. Furthermore, a principled fusion algorithm using deep learning to optimize kernel machines is developed. By bridging deep architectures with kernel optimization, this approach leverages the benefits of both paradigms and is applied to a wide variety of fusion problems. In many real-world applications, the modalities exhibit highly specific data structures, such as time sequences and graphs, and consequently, special design of the learning architecture is needed. In order to improve the temporal modeling for multivariate sequences, we developed two architectures centered around attention models. A novel clinical time series analysis model is proposed for several critical problems in healthcare. Another model coupled with triplet ranking loss as metric learning framework is described to better solve speaker diarization. Compared to state-of-the-art recurrent networks, these attention-based multivariate analysis tools achieve improved performance while having a lower computational complexity. Finally, in order to perform community detection on multilayer graphs, a fusion algorithm is described to derive node embedding from word embedding techniques and also exploit the complementary relational information contained in each layer of the graph.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    • …
    corecore