15,789 research outputs found

    Joint Scheduling and Power Control in Coordinated Multi-Point Clusters

    Get PDF
    In this paper, we address the problem of designing a joint scheduling and power control algorithm in a downlink coordinated multi-point (CoMP) cluster supporting CoMP joint transmission. The objective is to maximize the cell-edge throughput under per-point power constraints. By an analytical derivation, binary power control is proved to be the optimal solution for any given selected user group. Utilizing this analytical result, a centralized and a semi-distributed version of joint user selection and power control algorithms are proposed. Compared to algorithms without considering joint transmission and algorithms without considering power control, simulation results show that the proposed algorithms achieve a good trade-off between joint transmission and interference coordination, which helps to improve the cell-edge performance

    A Dynamic Clustering and Resource Allocation Algorithm for Downlink CoMP Systems with Multiple Antenna UEs

    Get PDF
    Coordinated multi-point (CoMP) schemes have been widely studied in the recent years to tackle the inter-cell interference. In practice, latency and throughput constraints on the backhaul allow the organization of only small clusters of base stations (BSs) where joint processing (JP) can be implemented. In this work we focus on downlink CoMP-JP with multiple antenna user equipments (UEs) and propose a novel dynamic clustering algorithm. The additional degrees of freedom at the UE can be used to suppress the residual interference by using an interference rejection combiner (IRC) and allow a multistream transmission. In our proposal we first define a set of candidate clusters depending on long-term channel conditions. Then, in each time block, we develop a resource allocation scheme by jointly optimizing transmitter and receiver where: a) within each candidate cluster a weighted sum rate is estimated and then b) a set of clusters is scheduled in order to maximize the system weighted sum rate. Numerical results show that much higher rates are achieved when UEs are equipped with multiple antennas. Moreover, as this performance improvement is mainly due to the IRC, the gain achieved by the proposed approach with respect to the non-cooperative scheme decreases by increasing the number of UE antennas.Comment: 27 pages, 8 figure

    Distributed Linear Precoding and User Selection in Coordinated Multicell Systems

    Full text link
    In this manuscript we tackle the problem of semi-distributed user selection with distributed linear precoding for sum rate maximization in multiuser multicell systems. A set of adjacent base stations (BS) form a cluster in order to perform coordinated transmission to cell-edge users, and coordination is carried out through a central processing unit (CU). However, the message exchange between BSs and the CU is limited to scheduling control signaling and no user data or channel state information (CSI) exchange is allowed. In the considered multicell coordinated approach, each BS has its own set of cell-edge users and transmits only to one intended user while interference to non-intended users at other BSs is suppressed by signal steering (precoding). We use two distributed linear precoding schemes, Distributed Zero Forcing (DZF) and Distributed Virtual Signal-to-Interference-plus-Noise Ratio (DVSINR). Considering multiple users per cell and the backhaul limitations, the BSs rely on local CSI to solve the user selection problem. First we investigate how the signal-to-noise-ratio (SNR) regime and the number of antennas at the BSs affect the effective channel gain (the magnitude of the channels after precoding) and its relationship with multiuser diversity. Considering that user selection must be based on the type of implemented precoding, we develop metrics of compatibility (estimations of the effective channel gains) that can be computed from local CSI at each BS and reported to the CU for scheduling decisions. Based on such metrics, we design user selection algorithms that can find a set of users that potentially maximizes the sum rate. Numerical results show the effectiveness of the proposed metrics and algorithms for different configurations of users and antennas at the base stations.Comment: 12 pages, 6 figure

    Fronthaul-Constrained Cloud Radio Access Networks: Insights and Challenges

    Full text link
    As a promising paradigm for fifth generation (5G) wireless communication systems, cloud radio access networks (C-RANs) have been shown to reduce both capital and operating expenditures, as well as to provide high spectral efficiency (SE) and energy efficiency (EE). The fronthaul in such networks, defined as the transmission link between a baseband unit (BBU) and a remote radio head (RRH), requires high capacity, but is often constrained. This article comprehensively surveys recent advances in fronthaul-constrained C-RANs, including system architectures and key techniques. In particular, key techniques for alleviating the impact of constrained fronthaul on SE/EE and quality of service for users, including compression and quantization, large-scale coordinated processing and clustering, and resource allocation optimization, are discussed. Open issues in terms of software-defined networking, network function virtualization, and partial centralization are also identified.Comment: 5 Figures, accepted by IEEE Wireless Communications. arXiv admin note: text overlap with arXiv:1407.3855 by other author
    • …
    corecore