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Abstract

Coordinated multi-point (CoMP) schemes have been widely studied in the recent years to tackle inter-cell
interference. In practice, latency and throughput constraints on the backhaul allow the organization of only small
clusters of base stations (BSs) where joint processing (JP) can be implemented. In this work, we focus on downlink
CoMP-JP with multiple antenna user equipments (UEs) where the additional degrees of freedom are used to suppress
the residual interference by using an interference rejection combiner (IRC) and allow a multi-stream transmission. The
main contribution of this paper is the development of a novel dynamic BS clustering algorithm with corresponding
UE scheduling. In particular, we first define a set of candidate BS clusters depending on long-term channel conditions.
Then, in each time block, we develop a resource allocation scheme where: (a) for each candidate BS cluster, with
corresponding scheduled UEs, a weighted sum rate is estimated and then (b) we select the set of non-overlapping BS
clusters that maximizes the downlink system weighted sum rate. Numerical results show that much higher rates are
achieved when UEs are equipped with multiple antennas and dynamic BS clustering is used.
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1 Introduction
Coordination among base stations (BSs) has been widely
studied in the recent years to tackle inter-cell interfer-
ence which strongly limits the rates achieved in cellular
systems, in particular by the user equipments (UEs) at
the cell-edge [1]. Supported by the first results promising
huge gains with respect to the baseline non-cooperative
system [2], a lot of attention has been paid to the topic
both in the academia [3,4] and in the industry [5,6]. These
techniques, known in the industry as coordinated multi-
point (CoMP), are classified into (a) coordinated schedul-
ing/beamforming (CS/CB), which requires channel state
information (CSI) but no data sharing among the BSs, and
(b) joint processing (JP), which requires both CSI and data
sharing among the BSs. This paper focuses on downlink
CoMP-JP, where BSs jointly serve the scheduled UEs by
sharing the data to be sent. Although CoMP-JP is a very
promising technique, many issues make its implementa-
tion still challenging. First, CSI at the transmitter may be
unreliable because of noise on channel estimation in time
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division duplex (TDD) systems and limited bandwidth
available for feedback in frequency division duplex sys-
tems. Then, sharing UE data among all the BSs is generally
limited by throughput and delay constraints in the back-
haul infrastructure. A possible approach to deal with back-
haul throughput constraints relies on partial sharing of UE
data among the BSs, i.e., a BS serving a certain UE may
have only a partial knowledge of the data to be sent toward
that UE [7,8]. Although the promising results achieved
under idealistic assumptions, partial UE data sharing has
not found application in real systems mainly due to its
complexity. To deal with limited throughput backhaul,
most of the works in the literature focus on the simpler
clustering approach where the BSs are organized in clus-
ters and joint processing is applied within each cluster by
sharing the whole data to be sent among all the BSs of the
cluster. However, even if intra-cluster interference is mit-
igated by using CoMP schemes within each cluster, UEs
at the cluster border suffer strong inter-cluster interfer-
ence (ICI). Many clustering schemes have been developed
in the literature to deal with ICI. In [9], static clustering
with block diagonalization is considered and precoders
are designed in each cluster by nullifying the interference
towards UEs of neighboring clusters close to the border.
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Amore flexible solution is obtained with dynamic cluster-
ing [10,11] where the set of clusters changes over time by
adapting to the network conditions. In particular, in [10], a
greedy algorithm is developed where, for each cluster, the
first BS is selected randomly to guarantee fairness, while
the remaining BSs are selected by maximizing the cluster
sum rate. In [11] instead, based on the long-term chan-
nel conditions, it is defined a set of candidate clusterings
and then in each time block is selected the most suitable
one. In [12], selected clusters maximize the increase of the
achievable UE rate, whereas in [12,13], they minimize the
interference power. In [14], a BS negotiation algorithm is
used for cluster formation within a given cluster size. In
[15], active clusters are selected by minimizing an overall
cost function which depends on the UE average received
power. A framework for feedback and backhaul overhead
reduction is developed in [16] where each UE feeds back
CSI only to a subset of BSs, andUEs associated to the same
subset are grouped together. In [17], a greedy UE schedul-
ing algorithm with overlapping clusters is proposed where
precoders are designed by considering the layered vir-
tual signal to interference plus noise ratio (SINR) criterion
[18]. In [19], an iterative algorithm is proposed to jointly
optimize beamforming and clustering in heterogeneous
networks.
However, most of the works on dynamic clustering

([10-13,16,17]) assume that UEs are equipped with only
one antenna, although the Long Term Evolution (LTE)
Advanced standard developed by the 3rd Generation
Partnership Project (3GPP) considers that UEs may be
equipped with up to eight antennas [20]. Although this
number seems a bit optimistic for current mobile devices,
the technological innovation may allow in the near-future
manufacturing smartphones or tablets with numerous
antennas and hence much more attention should be paid
to the study of CoMP schemes with multiple antenna
UEs [21,22]. Therefore, in this work, we consider down-
link CoMP-JP with a constraint on the maximum cluster
size and propose a novel dynamic BS clustering and UE
scheduling algorithm by explicitly considering that UEs
are equipped withmultiple antennas. In our proposal, UEs
exploit these additional degrees of freedom by implement-
ing interference rejection combiner (IRC) [23] to partially
suppress ICI and being served by means of a multi-stream
transmission. Moreover, differently from many works on
dynamic clustering where UE selection is not consid-
ered and a simple round robin scheduler is implemented
([10,12-14,16,19]), here, we assume UE scheduling as a
part of the optimization. In our approach, we first define
a set of candidate BS clusters depending on long-term
properties of the channels. Then, in each time block, the
proposed algorithm follows a two-step procedure: (a) a
weighted sum rate is estimated for each candidate clus-
ter by performing UE selection, precoding design, power

allocation, and transmission rank selection and then (b)
the central unit (CU) coordinating all the BSs schedules
the set of non-overlapping candidate clusters that maxi-
mizes the systemweighted sum rate under the assumption
of perfect successive interference cancellation (SIC) with
IRC at each UE.
For a performance comparison, we use the effective

achievable rate at UEs, by assuming that CSI is per-
fectly known at the receiver. In particular, we evaluate the
achievable rate of the proposed solution in a LTE-TDD
scenario and compare it against a baseline single-cell pro-
cessing (SCP) scheme and two static clustering schemes,
where clusters do not dynamically adapt to the network
conditions. Numerical results show that the achievable
rates strongly increase with the number of UE anten-
nas. Moreover, as with CoMP part of the interference
is managed at the transmit side, multi-stream transmis-
sion is more effective with the proposed scheme than
with SCP. However, as most of the gain is due to the
interference suppression capability of the IRC, the rela-
tive gain achieved by the proposed scheme with respect to
SCP decreases by increasing the number of UE antennas.
Finally, a further decrease of this gain is observed when
imperfect CSI is considered at BSs.
Notation. We use (·)T to denote transpose and (·)H con-

jugate transpose. 0N×M denotes the matrix of size N × M
with all zero entries, IN the identity matrix of sizeN, tr(X)

the trace of matrix X, det(X) the determinant of matrix X,
vec(X) the vectorization of X, ‖X‖ the Frobenius norm of
X, [X]n,m the entry on row n and column m of X, [X]·,m
the mth column of X, and diag (x) the diagonal matrix
with the entries of vector x on the diagonal. Expectation is
denoted by E [·].

2 Systemmodel
We consider a TDD system where a set of BSs J =
{1, 2, . . . , J}, each equipped with M antennas, is serving a
set of UEsK = {1, 2, . . . ,K}, each equipped withN anten-
nas, with K > JM. As the overall number of transmitting
antennas is not sufficient to serve all the UEs at the same
time, UE scheduling is part of the optimization problem.
We assume a block fading channel model and denote with
Hk,j(t), t = 0, 1, . . . ,T − 1, the multiple-input multiple-
output (MIMO) channel matrix of size N × M between
BS j and UE k in block t. We consider that the entries
of matrix Hk,j(t) are identically distributed zero-mean
complex Gaussian random variables, i.e.,

[
Hk,j(t)

]
n,m ∼

CN
(
0, σ 2

k,j

)
, for n = 0, 1, . . . ,N−1 andm = 0, 1, . . . ,M−

1, where σ 2
k,j represents the large scale fading between BS j

and UE k, which depends on path loss and shadowing. We
assume that the statistical description of the channels does
not change for all the T blocks, whereas fast fading real-
izations are independent among different blocks. Then,
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we denote with �k,j = E

[
vec

(
Hk,j(t)

)
vec

(
Hk,j(t)

)H]
the

covariance matrix of the channel matrix Hk,j(t). We indi-
cate with LE the number of resource elements, i.e., time
slots, forming a block. Note that the block fading model
considered in this work can be adapted to represent a
more realistic channel which changes continuously both
in time and in frequency by suitably selecting the number
of resource elements in each block. In fact, by denoting
withWC and TC the coherence bandwidth and time of the
channel, respectively, we have LE = WCTC .
We assume that the BSs are coordinated by a CU, and

the backhaul links have zero latency and are error-free.
Each block is organized in three phases: (a) in the first
phase, all the UEs send pilot sequences to allow channel
estimation at BSs, (b) in the second phase, BS clustering,
UE scheduling, beamforming design, transmission rank
selection, and power optimization are performed by the
CU, and finally, (c) in the third phase, the BSs perform data
transmission toward the set of scheduled UEs.
For the sake of clarity, we report in Table 1 the list of

important symbols used in this work.

2.1 First phase: uplink pilot transmission
The first LT resource elements of each block are allocated
to the uplink pilot transmission performed by the UEs.We
assume that orthogonal sequences, each of length LT , are
employed by the UEs; thus, interference on channel esti-
mation is avoided at BSs: in the considered scenario, this

Table 1 List of symbols, time block t has been omitted for
simplicity

Symbol Definition

J Set of BSs, each equipped withM antennas

K Set of UEs, each equipped with N antennas

C Set of integers, each identifying a candidate BS clusters

Jc Set of BSs forming candidate BS cluster c, c ∈ C
S Set of scheduled UEs

Uc Set of UEs corresponding to BSs in Jc (see (12))

Sc Set of scheduled UEs corresponding to BSs in Jc (see (16a))

Hk,j Channel between BS j and UE k

Ĥk,j Estimated channel between BS j and UE k

Ĥ(c)
k Estimated channel between BSs in Jc and UE k

Gk,j Precoding matrix used by BS j to serve UE k

G(c)
k Precoding matrix used by BSs in Jc to serve UE k

lk Transmission rank allocated to UE k

Pk Power vector allocated to UE k

R̂(c) Estimated weighted sum rate achieved by BSs in Jc

R̂k Estimated rate achieved by UE k

Rk Effective rate achieved by UE k

is achieved by imposing a minimum length of the training
sequence of LT ≥ NK . By denoting with P(UE) the maxi-
mum power available at each UE and σ 2

n the thermal noise
power, under the assumption of perfect reciprocity, BS j
estimates the channel matrix Hk,j(t) connecting UE k to
itself from the observation

ok,j,n,m(t) = [
Hk,j(t)

]
n,m + ηk,j,n,m(t) ,

n = 0, 1, . . . ,N − 1, m = 0, 1, . . . ,M − 1 ,
(1)

where ηk,j,n,m(t) ∼ CN
(
0, Nσ 2

n
LTP(UE)

)
. By assuming that BS

j knows the covariance matrix �k,j, the minimum mean
square error (MMSE) estimate Ĥk,j(t) of Hk,j(t) given the
observation (1) can be written as ([24], [Ch. 10])

vec
(
Ĥk,j(t)

)
= �k,j

(
�k,j + Nσ 2

n
LTP(UE)

IMN

)−1

×
(
vec

(
Hk,j(t)

) + vec
(
ηk,j(t)

))
,

(2)

where
[
ηk,j(t)

]
n,m

= ηk,j,n,m(t).
Note that in the case of uncorrelated channels, i.e., when

�k,j = IMN , the expression in (2) turns out to be

Ĥk,j(t) = 1

1 + Nσ 2
n

LTP(UE)σ 2
k,j

(
Hk,j(t) + ηk,j(t)

)
. (3)

2.2 Second phase: resource allocation at the CU
After uplink pilot transmission, each BS j forwards the
channel estimates Ĥk,j(t), k ∈ K, to the CU, which, in
turn, organizes BSs in clusters and schedules in each time
block t a subset S(t) ⊆ K of UEs.
In this work, we consider dynamic multi-stream trans-

mission and we denote with lk(t) the transmission rank
allocated to UE k in block t, i.e., the number of streams
sent toward UE k. Let us denote with Gk,j(t) theM × lk(t)
beamforming matrix used by BS j to serve UE k and
with Pk(t) = [

Pk,0(t),Pk,1(t), . . . ,Pk,lk(t)−1(t)
]
the power

allocation vector for UE k.
A basic approach to BS clustering is static, i.e., BS clus-

ters are fixed and do not change over time. For example,
in the hexagonal setup with seven sites and three BSs per
site, reported in Figure 1, typical standard configurations
are the following:

• Single cell processing (SCP), where no cooperation is
allowed among the BSs and each UE is served by its
anchor BS, i.e., the BS characterized by the highest
signal to noise ratio (SNR) (baseline scheme).

• Intra-site cooperation (ISC), where seven clusters are
constructed, each one composed by three co-located
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Figure 1 Network setup with J = 21 BSs organized in seven
sites, each with three sectors.

BSs (see Figure 2), and each UE is served by the best
site in terms of average SNR.

• Static clustering (SC), where still seven static clusters
are constructed, but with cooperation allowed among
three BSs of three different sites as shown in Figure 3.

Here, C = {1, 2, . . . , |C|} denotes the set of integers,
each identifying a candidate BS cluster, while Jc(t) ⊆
J is the c-th candidate BS cluster and Sc(t) ⊆ K the

Figure 2 Static CoMP-JP deployment with ISC.

Figure 3 Static CoMP-JP deployment with SC.

corresponding set of scheduled UEs. For complexity rea-
sons, in this work, we consider non-overlapping clusters:
hence, in each time block t, the set J of BSs is partitioned
into non-overlapping clusters and no UE can be served in
the same time block by two different BS clusters. Although
a solution with overlapping clusters would provide higher
rates, it would bemuchmore challenging in terms of com-
putational complexity, in particular when the number of
BSs J managed by the CU is high.
We denote with Ĥ(c)

k (t) the matrix of size N ×M |Jc(t)|
collecting the MIMO channel estimated by BSs in clus-
ter Jc(t) toward UE k and with G(c)

k (t) the correspond-
ing precoding matrix of size M |Jc(t)| × lk(t), with∥∥∥∥[

G(c)
k (t)

]
·,l

∥∥∥∥
2

= 1, l = 0, 1, . . . , lk(t) − 1. Due to the

imperfect CSI at BSs, the signal received by UE k is
modeled at the CU as

r̂(c)
k (t) = Ĥ(c)

k (t)G(c)
k (t)sk(t)+∑

m∈Sc(t)\{k}
Ĥ(c)

k (t)G(c)
m (t)sm(t) + nk(t) + î(c)k (t) ,

(4)

where sk(t) ∼ CN
(
0lk(t)×1, diag (Pk(t))

)
is the data

symbol vector transmitted toward UE k, nk(t) ∼
CN

(
0N×1, σ 2

n IN
)
is the thermal noise at the UE anten-

nas and î(c)k (t) is the estimate of the ICI suffered by UE
k. Note that the exact value of î(c)k depends on the beam-
formers used by other clusters to serve their own UEs.
By indicating with P(BS) the power available at each BS,
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beamformers are designed by assuming per-BS power
constraints, i.e.,∑
k∈Sc(t)

tr
(
GH
k,j(t)Gk,j(t)diag (Pk(t))

)
≤ P(BS) , j ∈ Jc(t) .

(5)

In this work, we make the following assumptions
regarding power allocation and beamforming design.

• Equal power is allocated to the streams sent toward
the UEs scheduled within the same cluster, i.e.,
Pk,l(t) = P(c)(t), k ∈ Sc(t), l = 0, 1, . . . , lk(t) − 1,
where P(c)(t) can be analytically computed from (5) as

P(c)(t) = P(BS)

max
j∈Jc(t)

∑
k∈Sc(t)

lk(t)−1∑
l=0

∥∥∥[
Gk,j(t)

]
·,l
∥∥∥2

. (6)

• Beamformers are designed by using the multi-user
eigenmode transmission (MET) scheme [25], where
the precoding matrix used to serve UE k is optimized
with the aim of nullifying the interference toward
the eigenmodes selected for the co-scheduled UEs
m ∈ Sc(t) \ {k}. In detail, let Ĥ(c)

k (t) = Û(c)
k (t)�̂(c)

k

(t)V̂ (c)H
k (t) be the singular value decomposition (SVD)

of matrix Ĥ(c)
k (t), where the eigenvalues in �̂

(c)
k (t)

are arranged so that the ones selected for transmis-
sion toward UE k appear in the leftmost columns. By
defining matrix

�̂
(c)
k (t) =[[
�̂

(c)
k (t)

]
0,0

[
V̂ (c)

k (t)
]
·,0 ,

[
�̂

(c)
k (t)

]
1,1

[
V̂ (c)

k (t)
]
·,1 ,

. . . ,
[
�̂

(c)
k (t)

]
lk(t)−1,lk(t)−1

[
V̂ (c)

k (t)
]
·,lk(t)−1

]H
,

(7)

precoding matrix used to serve UE k satisfies con-
straints

�̂
(c)
m (t)Ĝ(c)

k (t) = 0lm(t)×lk(t) , k �= m . (8)

Note that MET has been proven to outperform in a
MIMO broadcast channel other linear precoding schemes
such as block diagonlization [25], whereas the assumption
of equal power allocation among the scheduled streams
reduces the computational complexity and is asymptoti-
cally optimal at high SNR.
The main contribution of this work, described in

Section 3, is a practical algorithm for dynamic BS clus-
tering and corresponding UE scheduling developed in the
considered setup with multiple antenna BSs, with equal
power allocation and MET, that transmit toward multiple

antenna UEs. Moreover, we recall that at UEs, the mul-
tiple receive antennas are used to perform IRC with SIC
([26], Ch. 10); in fact, while the rank lk(t) allocated to UE
k is given by the number of columns of the precoder, the
remaining degrees of freedom at UE are used to partially
suppress the residual ICI. Note that IRC both minimizes
the mean square error and maximizes the SINR at the
detection point [23].

2.3 Third phase: downlink data transmission
BS clusters serve the scheduled UEs by using the LE − LT
resource elements still available in block t. By defining

matrixGk(t) =
[
GT
k,1(t),G

T
k,2(t), . . . ,G

T
k,J (t)

]T
and matrix

Hk(t) = [
Hk,1(t),Hk,2(t), . . . ,Hk,J (t)

]
, the signal received

by UE k can be written as

rk(t) =Hk(t)Gk(t)sk(t) +
∑

m∈S(t)\{k}
Hk(t)Gm(t)sm(t) + nk(t) .

(9)

3 Dynamic clustering algorithm
In this section, we drop the block index t for the sake of
clarity. With respect to UE k, let us define the function
fk : J → J , which orders the BSs on the basis of the
large scale fading component of the channel, i.e., σ 2

k,fk(c1) >

σ 2
k,fk(c2) if c1 < c2. Then, we indicate with J (u)

k the cluster
of the u BSs with the strongest average channel toward UE
k, i.e.,

J (u)

k = {
fk(1), fk(2), . . . , fk(u)

}
. (10)

Hence, fk(1) is the anchor BS for UE k.
In a network with J BSs and a maximum cluster size

of JMAX, the number of possible BS clusters that can be
constructed to serve a given UE is

JMAX∑
j=1

(
J
j

)
, (11)

which rapidly increases with J. However, as most of the
interference at each UE comes from the closest BSs, we
can limit the number of candidate BS clusters. Hence,
we assume that set C identifies all and only the sets J (u)

k
whose size is not bigger than JMAX. As an example, select-
ing JMAX = 3, set C identifies three candidate clusters for
each UE k: (i) the first cluster includes only its anchor BS,
J (1)
k , (ii) the second cluster is composed of the two clos-

est BSs, J (2)
k , and (iii) the third cluster is composed of the

three closest BSs, J (3)
k . Note that, as different UEs often

have the same candidate clusters, the cardinality of set C
turns out to be much lower than KJMAX. The considered
assumption yields an important saving in terms of com-
putational complexity by strongly limiting the number of
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candidate clusters with respect to (11): this complexity
saving is evaluated in Section 4 for a typical LTE scenario.
Now, clusters J (u)

k , with u ≤ JMAX, are ordered by an
integer index c, and for each cluster Jc, c ∈ C, we define
the corresponding set Uc of UEs that can be scheduled for
reception, which is formed by the UEs whose anchor BS
belongs to Jc, i.e.,

Uc = {
k ∈ K : fk(1) ∈ Jc

}
. (12)

We highlight that (12) allows BSs in cluster Jc to serve all
the UEs in its coverage area, even UEs close to the border.
Although a different choice could be taken for instance
by forcing clusters to serve only the UEs far away from
the border, it has been shown in [27] that this alternative
choice provides worse performance than (12) when a huge
network is considered and fairness among the UEs is taken
into account.
In this work, we propose an algorithm for dynamic BS

clustering and UE scheduling at the CU which follows a
two-step procedure.

1. For each candidate BS cluster Jc, we estimate the
weighted sum rate R̂(c) by selecting a suitable sub-
set of UEs Sc ⊆ Uc, designing precoders, selecting
transmission ranks, and allocating powers.

2. After computing the weighted sum rate R̂(c) for all the
candidate BS clusters in C, the CU schedules a set of
non-overlapping BS clusters, where each BS belongs
to at most one cluster.

Moreover, based on (12), we observe that UE k can
be selected only by candidate clusters that include its
anchor BS fk(1). Hence, if we enforce a non-overlapping
solution, each UE is never scheduled by two different
non-overlapping clusters in the same block. However, we
highlight that the proposed dynamic solution allows the
flexibility of scheduling a given UE in different clusters
across successive blocks.
In the rest of this section, we describe more in detail the

above two main steps of the algorithm. We stress that the
candidate cluster selection, i.e., the construction of set C
depends on the large scale fading: hence, in our model, it
should be performed only every T blocks. On the other
hand, the two-step algorithm described above follows a
fast fading time-scale and therefore must be implemented
in each block.
In Figure 4, we report a flow chart which summarizes

the proposed system configuration.

3.1 Cluster weighted sum rate estimation
The CU estimates the weighted sum rate R̂(c) that can be
achieved by candidate cluster Jc by modeling the signal

received by UE k ∈ Uc as in (4). Besides the errors due to
the imperfect CSI (2), the estimated ICI î(c)k depends on
the precoders used by the other clusters scheduled by the
CU. In our framework, as the CU schedules the clusters
after estimating the weighted sum rate achievable in each
candidate, we simply assume î(c)k ∼ CN

(
0N×1, ξ (c)

k IN
)

with

ξ
(c)
k = P(BS)

∑
j∈J \Jc

σ 2
k,j . (13)

Note that (13) represents the average ICI power at the
UE k when all the BSs outside cluster c are transmitting
at full power ([28], (2)), and for each candidate cluster
allows the computation of R̂(c) independently of the other
candidates.
From (4), we introduce the interference plus noise

covariance matrix

�̂
(c)
k =

(
σ 2
n + ξ

(c)
k

)
IN+∑

m∈Sc\{k}
Ĥ(c)

k G(c)
m diag (Pm)G(c)H

m Ĥ(c)H
k .

(14)

By using (4) and (14), we can write the estimate at the CU
of the rate R̂k achieved by UE k as

R̂k =
(
1 − LT

LE

)

× log2 det
(
IN + Ĥ(c)

k G(c)
k diag (Pk)G(c)H

k Ĥ(c)H
k �̂

(c)−1
k

)
.

(15)

Note that the estimate of the rate achieved by UE k in
(15) is computed by assuming that the multiple receive
antennas are exploited by performing SIC with IRC ([26],
Ch. 10): the rank lk allocated to UE k is given by the
number of columns of precoderG(c)

k , whereas the remain-
ing degrees of freedom are used to partially suppress the
residual ICI by IRC. Then, the weighted sum rate R̂(c) is
estimated at the CU by solving the following optimization
problem:

R̂(c) = max
Sc⊆Uc,

{
G(c)
k

}
k∈Sc

,{Pk}k∈Sc

∑
k∈Sc

αkR̂k (16a)

s.t. ∑
k∈Sc

tr
(
GH
k,jGk,jdiag (Pk)

)
≤ P(BS) , j ∈ Jc , (16b)

where scaling factor αk in (16a) represents the quality of
service (QoS) for UE k which depends on the employed
scheduler.
Maximization (16) is a well-studied multi-user MIMO

problem [29] involving (a) UE selection, (b) transmis-
sion rank selection, (c) precoding design, and (d) power
allocation.
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Figure 4 Flow chart showing the main steps of the proposed system configuration.

We solve problem (16) by enforcing the assumptions
of equal power allocation among the streams sent within
cluster Jc and MET introduced in Section 2.2. Moreover,
the eigenmodes (and accordingly the set Sc of sched-
uled UEs and the transmission rank allocated to each UE
k ∈ Sc) are selected by using a greedy iterative algorithm
which, at each iteration, includes the eigenmode which
maximizes the weighted sum rate R̂(c) among the ones not
scheduled in the previous iterations. The algorithm starts
with no UE scheduled and stops when no increase in the
weighted sum rate R̂(c) is observed. Cluster Jc, among the
N |Uc| possible eigenmodes, selects a maximum ofM |Jc|
eigenmodes, due to the limited number of BS antennas.
Note that the considered method flexibly adapts to the
channel conditions by allowing the allocation of (a) dif-
ferent ranks to different UEs in the same block and (b)
different ranks to the same UE across successive blocks.

3.2 Clustering optimization
After computing all the weighted sum rates R̂(c), c ∈ C,
the CU schedules the set of non-overlapping clusters that
maximizes the system weighted sum rate. In detail, by
defining

aj,c =
{
1, j ∈ Jc,
0, otherwise,

xc =
{
1, CU schedules candidate clusterJc,
0, otherwise,

we consider that each BS belongs to at most one cluster,
i.e., we impose

∑
c∈C

aj,c xc ≤ 1 , j ∈ J . (17)



Baracca et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:125 Page 8 of 14
http://jwcn.eurasipjournals.com/content/2014/1/125

Therefore, at the CU, the clustering optimization is per-
formed by solving the following linear integer optimiza-
tion problem

max
xc, c∈C

∑
c∈C

R̂(c) xc , (18)

s.t. (17).
Note that (18) differs from the optimization carried out

in [15] where the objective function simply depends on the
received power measured by the UEs.
Maximization (18) is the optimization version of the

set packing problem, which is shown to be NP-hard [30].
Hence, as the exhaustive search is not a viable method to
solve (18), we propose a greedy iterative algorithm which
is reported in Algorithm 1: the proposed solution basi-
cally selects at each iteration the best (in terms of system
weighted sum rate) cluster and ends when each BS has
been assigned to at least one cluster. In detail, let C(A)(n)

be the set identifying the candidate BS clusters considered
at iteration n. The algorithm starts by imposing C(A)(1) ←
C and ends when C(A)(n) = ∅. Note that C(A)(n) identi-
fies all the candidate clusters that do not overlap with the
clusters scheduled in the previous iterations. At iteration
n, we select cluster w ∈ C(A)(n) that maximizes the per-BS
weighted sum rate, i.e.,

ω = argmax
c∈C(A)(n)

R̂(c)

|Jc| , (19)

and we remove from C(A)(n) all the indexes identifying
clusters that partially overlap with Jw. Note that in crite-
rion (19), we normalize the cluster weighted sum rate R̂(c)

to the number of BSs |Jc| included in the cluster with the
aim of scheduling big clusters only if this really provides
an improvement. Let us consider as an example a basic
scenario with J = 2: by using (19), we schedule the cluster
of two BSs only if its weighted sum rate R̂(c) is higher than
that achieved when the two BSs are uncoordinated (SCP
scheme).

Algorithm 1 Greedy iterative algorithm for cluster
selection (18)
1: x(∗)

c ← 0, c ∈ C
2: n ← 1
3: C(A)(n) ← C
4: while C(A)(n) �= ∅ do
5: ω ← argmax

c∈C(A)(n)

R̂(c)/ |Jc|

6: x(∗)
ω ← 1

7: C(A)(n + 1) ← C(A)(n) \ ⋃
c̄∈C(A)(n):Jc̄∩Jω �=∅

{c̄}
8: n ← n + 1
9: end while

By denoting with x(∗)
c the greedy solution to (18)

obtained by applying the proposed algorithm, the set S of
UEs scheduled in the current block turns out to be

S =
⋃

c∈C : x(∗)
c =1

Sc . (20)

4 Numerical results
We consider a hexagonal cellular scenario where J = 21
BSs, each equipped with M = 4 antennas, are organized
in seven sites, each with three co-located BSs (see also
Figure 1). We consider ten UEs randomly dropped in the
coverage area of each BS, with K = 210 UEs overall. The
power available at each BS is P(BS) = 46 dBm, the power
available at each UE is P(UE) = 23 dBm, and the thermal
noise power is σ 2

n = −101 dBm. The large scale fading
between BS j and UE k can be written as

σ 2
k,j = �(CE)

(
d(CE)

dk,j

)ν

eζk,j A(θk,j) , (21)

where dk,j is the distance between BS j and UE k, ν = 3.5 is
the path loss coefficient, �(CE)

∣∣
dB = 10 dB is the average

SNR when an UE is at the cell edge, eζk,j is the lognormal
shadowing with 8 dB as standard deviation, and A(θk,j)
models the antenna gain as a function of the direction θk,j
of UE k with respect to the antennas of BS j, with

A(θk,j)
∣∣
dB = −min

{
12

(
θk,j/θ3dB

)2 ,As
}
, (22)

where θ3dB = (70/180)π and As|dB = 20 dB ([31],
(21.3)). We consider an inter-site distance of 500 m and a
minimum distance dmin = 35 m between BSs and UEs.
Wraparound is used to deal with boundary effects [32].
We also assume that channels are correlated by consider-
ing the popular Kronecker model [33]. By denoting with
RBS the square correlation matrix of sizeM at the BS, with
tr(RBS) = M, and with RUE the square correlation matrix
of size N at the UE, with tr(RUE) = N , we can write

Hk,j(t) = R1/2
UE H̄k,j(t)

(
R1/2
BS

)H
, (23)

where H̄k,j(t) is a matrix of size N × M whose entries are
independent and identically distributed zero-mean com-
plex Gaussian random variables with σ 2

k,j as statistical
power.
Results are obtained by simulating 100 UE drops and

T = 200 block channel realizations for each UE drop.
We assume that proportional fair scheduling [34] is imple-
mented to provide fairness among UEs, i.e., αk(t) =
1/R̃k(t), with R̃k(t + 1) = (1 − γ )R̃k(t) + γRk(t), t =
0, 1, . . . ,T − 1, where γ = 0.1 is the forgetting factor and
we initialize R̃k(0) = log2

(
1 + P(BS)σ 2

k,jk/σ
2
n

)
. However,

to allow the scheduler to reach a steady state, only the last
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T/2 channels of each UE drop are considered for system
performance evaluation.
We compare the developed scheme based on dynamic

clustering (DC) against the three static schemes SCP, ISC,
and SC, introduced in Section 2. Moreover, we assume
that UE scheduling, beamforming design, transmission
rank selection, and power allocation are performed, as
described in Sections 2.2 and 3.1, also for the static
schemes: in particular, UEs are served by using MET [25]
with equal power allocation among the eigenmodes and a
greedy UE selection is performed within each BS cluster.
For performance evaluation, we assume perfect CSI at

the UE side, which employs IRC with SIC, and perfect
detection, i.e., there is no error propagation. Moreover,
in Section 4.6, we further provide some numerical results
that validate the assumption of perfect CSI at the UE
employed in most of the CoMP literature.
From (9), the interference plus noise covariance matrix

at the UE can be written as

�k(t) = σ 2
n IN +

∑
m∈S(t)\{k}

Hk(t)Gm(t)diag (Pm(t))GH
m(t)HH

k (t) .

(24)

The effective rate achieved by UE k turns out to be ([26],
Ch. 10)

Rk(t) =
(
1 − LT

LE

)
× log2 det (IN + Hk(t)Gk(t)

diag (Pk(t))GH
k (t)HH

k (t)�−1
k (t)

)
.

(25)

In (25), the overhead due to the UE pilot transmission
is taken into account in the scaling factor before the
logarithm.
The proposed schemes are compared in terms of:

• UE rate, defined as

R̄k = 2
T

T−1∑
t=T/2

Rk(t) (26)

• Average cell rate, defined as

R̄cell = 1
J

∑
k∈K

R̄k (27)

First, to evaluate the complexity saving achieved by the
candidate cluster selection described at the beginning of
Section 3, we show in Table 2 the 5th, the 50th, and the
95th percentiles of the number |C| of candidate clusters
considered with DC by assuming JMAX = 3. By adapting
the candidate clusters to the long-term channel condi-
tions, we have a saving of about 80% in terms of |C| with
respect to the full search (11); in fact, with our approach,
we ignore candidate clusters that include far apart BSs.

Table 2 Number of candidate clusters with JMAX = 3:
comparison between DC and exhaustive search

DC-5th DC-50th DC-95th Equation (11)

|C| 235 249 263 1,561

4.1 Effect of multiple antennas at UEs
In this section, we consider perfect CSI at BSs, i.e.,
Ĥk,j(t) = Hk,j(t) in (2), uncorrelated antennas, i.e., in (23)
RBS = IM and RUE = IN , and we assume JMAX = 3 with
DC for a fair comparison against ISC and SC in terms of
maximum cluster size. In Figures 5 and 6, we report the
average cell rate and the fifth percentile of the UE rate for
three values of the numberN of UE antennas, respectively.
First, we observe a significative performance improve-
ment by adding antennas at the UE side. For instance, with
SCP by increasing N from 1 to 4, there is a gain of about
76% in terms of the fifth percentile of the UE rate. Two
factors mainly contribute to this gain: (a) UEs with lower
SINR use IRC to limit the impact of residual ICI not man-
aged at the transmit side and (b) UEs with higher SINR
can be served by multiple streams of data. From Table 3,
where we report the distribution of the number of streams
lk with N = 4, we note that with SCP more than 80%
of the transmissions are rank 1. On the other hand, with
DC, as the interference level suffered by the UEs is lower,
about 33% of transmissions are multi-stream. This shows
that in general, most of the gain is due to the IRC and
multi-stream transmission plays a non-negligible role only
with DC. Then, we observe that ISC provides a moderate
gain with respect to SCP in terms of cell rate, but almost
no gain in terms of the fifth percentile of the UE rate,
whereas the opposite happens with SC. Indeed, ISC of
Figure 2, by only allowing cooperation among the sectors
of the same site, partially helps the UEs close to the site
border, which however get better performance with SC of

Figure 5 Average cell rate for three values of N andM = 4.
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Figure 6 Fifth percentile of the UE rate for three values of N and
M = 4.

Figure 3. Moreover, we also observe that the performance
gain achieved by DC over SCP decreases by adding more
antennas at the UE side. In fact, as the gain of using mul-
tiple antenna UEs is mainly due to the IRC which cancels
ICI, the benefits of increasing N are seen more in a non-
cooperative scenario, where the residual ICI is higher with
respect to DC. In detail, from Figure 6, the performance
gain achieved by DC over SCP drops from about 43% with
N = 1 to about 28% with N = 4.
To further understand the role of IRC and multi-stream

transmission with both SCP and CoMP, we consider now
a simplified solution to (16) obtained by assuming a max-
imum number of streams l(MAX) that can be transmitted
toward each UE and limiting the eigenmodes that can
be used for each UE to only the strongest l(MAX) eigen-
modes. In Table 4, we report the average cell rate and
the fifth percentile of the UE rate by considering N = 4
and l(MAX) = 1, 4. Note that l(MAX) = 1 means that
each UE is always served by rank 1 transmissions along
its strongest eigenmode and implements IRC, whereas
l(MAX) = N = 4 means that there are no constraints on
the number of data streams. Again, as the level of ICI is
higher with SCP, in terms of the fifth percentile of the UE
rate, the gain achieved by DC over SCP decreases from
about 28% with l(MAX) = 4 to about 18% with l(MAX) = 1.
These results confirm that the gain of CoMP with respect

Table 3 Distribution (%) of lk with N = 4

lk = 1 lk = 2 lk = 3 lk = 4

SCP 82.6 16.0 1.4 0.0

ISC 82.8 15.5 1.6 0.1

SC 82.9 15.7 1.4 0.0

DC 67.4 21.4 8.1 3.1

Table 4 Average cell rate and fifth percentile of the UE rate
with N = 4 and l(MAX) = 1, 4

R̄cell [bit/s/Hz] Fifth percentile of R̄k [bit/s/Hz]

l(MAX) = 1 l(MAX) = 4 l(MAX) = 1 l(MAX) = 4

SCP 10.74 10.84 0.415 0.404

DC 11.89 11.96 0.491 0.518

to the baseline non-cooperative scheme can still be impor-
tant when UEs are equipped with multiple antennas, but
only if multi-stream transmission is properly exploited.

4.2 Effect of antenna correlation
In Figure 7, we consider N = 4, l(MAX) = 1, and per-
fect CSI at BSs, and we introduce correlation among UE
antennas by assuming that RUE is a symmetric Toeplitz
matrix whose first column is [RUE]·,0 = [

1,β , . . . ,βN−1]T ,
and plot the fifth percentile of the UE rate in terms of β .
As expected, a higher rate is achieved with low-correlated
antennas, i.e., for lower values of β . Moreover, we also
observe that the gain achieved by DC over SCP decreases
by decreasing β : in detail, this gain drops from 25% with
β = 0.9 to 18% with β = 0.1. In fact, by decreasing the
correlation among UE antennas, we improve the interfer-
ence suppression capability of IRC. These results confirm
that it is not worthy to add more antennas at the UE when
they are strongly correlated.

4.3 Effect of UE selection
In this section, we consider N = 4, l(MAX) = 1, and
perfect CSI at the BSs, and we evaluate how the heuris-
tic greedy UE selection method introduced in Section 3.1
to solve problem (16) and the proposed dynamic clus-
tering scheme impact the gain achieved by CoMP over
SCP. Therefore, in Figure 8, we evaluate SCP and DC

Figure 7 Fifth percentile of the UE rate with respect to β with
N = 4 and l(MAX) = 1.
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Figure 8 Fifth percentile of the UE rate achieved by a round
robin UE selection for four values of S(BS).

with JMAX = 3 in terms of the fifth percentile of the
UE rate by considering a round robin UE selection with
S(BS) = 1, 2, 3, 4 UEs scheduled by each BS: note that when
the UEs are selected in a round robin fashion, the gain
achieved by CoMP over SCP depends only on the cluster-
ing scheme, as no joint optimization of UE scheduling and
clustering is performed. First, we observe that S(BS) = 2
represents the optimal value for both SCP and DC. In
fact, when the UEs are scheduled in a round robin fash-
ion, increasing the value of S(BS), while it allows more
UEs to be served in each block, it also increases the likeli-
hood of selecting UEs whose channels are almost parallel,
thus degrading the achieved rates. Then, when we look at
the impact of the UE selection method, we observe that
with DC, a gain of about 37% is achieved by the greedy
method over the round robin approach (see also Table 4).
Finally, we observe that the gain achieved by DC over
SCP decreases from about 18% with the greedy method to
about 11% with the round robin approach.

4.4 Effect of cluster size
In Figure 9, by assuming N = 1, 4, l(MAX) = 1, uncorre-
lated antennas and perfect CSI at BSs, we compare SCP
and DC in terms of the fifth percentile of the UE rate for
four values of the maximum cluster size JMAX. An impor-
tant gain is observed with CoMP by increasing JMAX: for
instance, the gain achieved by DC over SCP increases
from 43% (18%) with JMAX = 3 to about 84% (40%) with
JMAX = 6 when N = 1 (N = 4). These results show that
although the strongest interferers are managed by CoMP
with JMAX = 3, the ICI suffered by UEs is still very high
and strongly limits system performance. Hence, a general
comment is that BS clusters of higher dimension should
be employed if the backhaul infrastructure is able to
handle it.

Figure 9 Fifth percentile of the UE rate for two values of N and
four values of JMAX: l(MAX) = 1.

4.5 Effect of imperfect CSI at BSs
In this section, we assume that the CSI at BSs is affected
by noise (2) due to the finite number of resource elements
LT allocated to the pilot transmissions in each block.
After denoting with fd the maximum Doppler frequency,
and with τ̄rms the root-mean square delay spread of the
channel, we define, respectively, the coherence bandwidth
([35], Ch. 4) and coherence time ([36], Ch. 4) of the
channel as

WC = 1
τ̄rms

, (28a)

TC = 0.423
fd

. (28b)

Note that above expressions are only used to determine
the block size LE such that the channel can be modeled as
uncorrelated between adjacent blocks. Indeed, if fd or τ̄rms
increase, LE is reduced and this lowers the rate of each UE
as given by (25). Due to the problem of obtaining a reliable
CSI at BSs in a high mobility scenario, in the following, we
consider fd = 5 Hz, which at 2.5 GHz carrier frequency
roughly corresponds to a mobile velocity of 2 km/h ([31],
Ch. 21). In this section, we also assumeN = 4, l(MAX) = 1,
uncorrelated antennas and JMAX = 3 with DC.
In Figure 10, we consider the extended pedestrian A

(EPA)model, which is a very low frequency selective chan-
nel with τ̄rms = 43 ns ([31], Tab. 21.2). In detail, we
show the fifth percentile of the UE rate versus the ratio
LT/LE , which represents the fraction of resources used for
pilot transmission. The dashed lines are the rates com-
puted in Section 4.1 by assuming perfect CSI at BSs. We
observe that in this case, rate performance close to the
perfect CSI case can be achieved by properly increas-
ing the value of LT . Moreover, note that SCP approaches
the best performance faster than CoMP schemes. In fact,



Baracca et al. EURASIP Journal onWireless Communications and Networking 2014, 2014:125 Page 12 of 14
http://jwcn.eurasipjournals.com/content/2014/1/125

Figure 10 Fifth percentile of the UE rate versus LT/LE with N = 4,
l(MAX) = 1, and for the EPA channel.

while with SCP only the channels between a BS and its
anchored UEs are used for precoding design, with CoMP
precoders are optimized on the basis also of the chan-
nels between some other auxiliary BSs and these UEs. As
these channels are generally characterized by a lower SNR
with respect to the channel between a BS and its anchored
UEs, more pilots are necessary to collect a reliable CSI at
transmit side.
In Figure 11, we plot the fifth percentile of the UE rate

versus the ratio LT/LE for the very frequency-selective
extended typical urban (ETU) channel model, character-
ized by τ̄rms = 991 ns ([31], Tab. 21.2). In this case, we
observe that rates increase with LT up to a maximum and
then decrease. In fact, increasing the value of LT has two
conflicting effects: (a) from (3) a more reliable CSI is col-
lected at BSs thus improving performance and (b) a lower

Figure 11 Fifth percentile of the UE rate versus LT/LE with N = 4,
l(MAX) = 1, and for the ETU channel.

number of resource elements is allocated to data transmis-
sion thus obviously reducing the achievable rate. Clearly,
for lower values of LT , the effect of a better CSI dominates,
whereas for higher values of LT , the CSI is reliable enough
for the SINR level of the UEs, and a further increase of
the number of pilots represents only a waste of resources.
Even if we are still considering a low mobility scenario,
due to the higher frequency selectivity of the ETU channel
model, no scheme reaches the rates achieved with perfect
CSI. Then, as observed for the EPA model, the fraction of
resources allocated to pilots necessary to reach the peak
in performance is lower for SCP (LT/LE ≈ 0.02) than that
for DC (LT/LE ≈ 0.03). By choosing for each scheme the
value of LT which provides the best rate, the performance
gain achieved by DC over SCP decreases with respect to
the perfect CSI case to about 16%.

4.6 Effect of imperfect CSI at UEs
In this section, we elaborate on the assumption of per-
fect CSI at UEs considered in (25). Indeed, it has already
been shown [37,38] that in a similar setup, the overhead
required to obtain a reliable CSI at UEs is almost negligi-
ble when compared to the overhead necessary to acquire
CSI at BSs. This result is simply explained by the huge
difference in terms of available power at UEs and BSs,
which is 23 dB in a typical LTE scenario: hence, for the
same quality in CSI estimate, many more resources are
needed for an estimate at BSs than for an estimate at UEs.
Moreover, in our model, UE k, in order to implement IRC,
needs to know the interference covariance matrix �k(t)
(24) of size N × N , which also depends on the precoders
used by the interfering clusters serving their own UEs.
Two estimates of �k(t) at UE k are (a) a simple average
of the received samples as proposed in ([39], pag. 10) to
directly estimate �k(t) or (b) the use of orthogonal train-
ing sequences among different BS clusters to estimate the
cascade channel precoders Hk(t)Gm(t), m �= k, which, in
turn, are used to construct matrix �k(t) from (24). Dif-
ferently from Section 4.5 where the results are shown in
terms of the length of the uplink training sequence LT ,
here, we assume perfect CSI at BSs and set the length of
the downlink training sequences employed by the clusters
to its minimum vale JM, equal to the maximum number of
streams that can be sent by the BSs. We report in Table 5
the average cell rate and the fifth percentile of the UE rate
with SCP and DC by also assuming N = 4, l(MAX) = 1,
uncorrelated antennas, and JMAX = 3. We consider the

Table 5 Average cell rate and fifth percentile of the UE rate
for the ETU channel with imperfect CSI at UEs

R̄cell [bit/s/Hz] Fifth percentile of R̄k [bit/s/Hz]

SCP 10.69 0.414

DC 11.84 0.489
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ETU channel in a lowmobility scenario with fd = 5 Hz. As
expected, when compared to the perfect CSI case reported
in Table 4, the performance loss when imperfect CSI is
assumed at UEs turns out to be less than 1%, i.e., almost
negligible.

5 Conclusions
In this paper, we have considered a downlink CoMP-JP
system and, by assuming a maximum cluster size, we have
developed a dynamic BS clustering algorithm where the
clusters change over time adapting to the channel condi-
tions. We consider that UEs are equipped with multiple
antennas that implement IRC and are served by a multi-
stream transmission. The proposed algorithm first defines
a set of candidate BS clusters depending on the large scale
channel fading. Then, a two-step procedure is applied
following a fast fading time scale: (a) first, a weighted
sum rate is estimated within each candidate BS cluster
by performing UE selection, precoding, power and trans-
mission rank selection, and then (b) the CU schedules
the set of non-overlapping BS clusters that maximizes the
estimated system weighted sum rate. Numerical results
show that much higher effective rates can be achieved
when UEs are equipped with multiple antennas. In fact,
by reducing the level of interference suffered by UEs, the
proposed approach exploits more the multi-stream trans-
mission than SCP. However, as most of the gain is due
to the IRC, the gain achieved by the proposed approach
decreases with respect to SCP by increasing the number of
UE antennas. Finally, when channel estimation is consid-
ered at BSs, the gain promised in the perfect CSI scenario
may be achieved only in part; in fact, a better estimate
requires a longer training sequence and this lowers the
system rate.
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