80,516 research outputs found

    From Parallel Sequence Representations to Calligraphic Control: A Conspiracy of Neural Circuits

    Full text link
    Calligraphic writing presents a rich set of challenges to the human movement control system. These challenges include: initial learning, and recall from memory, of prescribed stroke sequences; critical timing of stroke onsets and durations; fine control of grip and contact forces; and letter-form invariance under voluntary size scaling, which entails fine control of stroke direction and amplitude during recruitment and derecruitment of musculoskeletal degrees of freedom. Experimental and computational studies in behavioral neuroscience have made rapid progress toward explaining the learning, planning and contTOl exercised in tasks that share features with calligraphic writing and drawing. This article summarizes computational neuroscience models and related neurobiological data that reveal critical operations spanning from parallel sequence representations to fine force control. Part one addresses stroke sequencing. It treats competitive queuing (CQ) models of sequence representation, performance, learning, and recall. Part two addresses letter size scaling and motor equivalence. It treats cursive handwriting models together with models in which sensory-motor tmnsformations are performed by circuits that learn inverse differential kinematic mappings. Part three addresses fine-grained control of timing and transient forces, by treating circuit models that learn to solve inverse dynamics problems.National Institutes of Health (R01 DC02852

    Excitable human dynamics driven by extrinsic events in massive communities

    Full text link
    Using empirical data from a social media site (Twitter) and on trading volumes of financial securities, we analyze the correlated human activity in massive social organizations. The activity, typically excited by real-world events and measured by the occurrence rate of international brand names and trading volumes, is characterized by intermittent fluctuations with bursts of high activity separated by quiescent periods. These fluctuations are broadly distributed with an inverse cubic tail and have long-range temporal correlations with a 1/f1/f power spectrum. We describe the activity by a stochastic point process and derive the distribution of activity levels from the corresponding stochastic differential equation. The distribution and the corresponding power spectrum are fully consistent with the empirical observations.Comment: 9 pages, 3 figure

    Governance, scale and the environment: the importance of recognizing knowledge claims in transdisciplinary arenas

    Get PDF
    Any present day approach of the world’s most pressing environmental problems involves both scale and governance issues. After all, current local events might have long-term global consequences (the scale issue) and solving complex environmental problems requires policy makers to think and govern beyond generally used time-space scales (the governance issue). To an increasing extent, the various scientists in these fields have used concepts like social-ecological systems, hierarchies, scales and levels to understand and explain the “complex cross-scale dynamics” of issues like climate change. A large part of this work manifests a realist paradigm: the scales and levels, either in ecological processes or in governance systems, are considered as “real”. However, various scholars question this position and claim that scales and levels are continuously (re)constructed in the interfaces of science, society, politics and nature. Some of these critics even prefer to adopt a non-scalar approach, doing away with notions such as hierarchy, scale and level. Here we take another route, however. We try to overcome the realist-constructionist dualism by advocating a dialogue between them on the basis of exchanging and reflecting on different knowledge claims in transdisciplinary arenas. We describe two important developments, one in the ecological scaling literature and the other in the governance literature, which we consider to provide a basis for such a dialogue. We will argue that scale issues, governance practices as well as their mutual interdependencies should be considered as human constructs, although dialectically related to nature’s materiality, and therefore as contested processes, requiring intensive and continuous dialogue and cooperation among natural scientists, social scientists, policy makers and citizens alike. They also require critical reflection on scientists’ roles and on academic practices in general. Acknowledging knowledge claims provides a common ground and point of departure for such cooperation, something we think is not yet sufficiently happening, but which is essential in addressing today’s environmental problems

    Platonic model of mind as an approximation to neurodynamics

    Get PDF
    Hierarchy of approximations involved in simplification of microscopic theories, from sub-cellural to the whole brain level, is presented. A new approximation to neural dynamics is described, leading to a Platonic-like model of mind based on psychological spaces. Objects and events in these spaces correspond to quasi-stable states of brain dynamics and may be interpreted from psychological point of view. Platonic model bridges the gap between neurosciences and psychological sciences. Static and dynamic versions of this model are outlined and Feature Space Mapping, a neurofuzzy realization of the static version of Platonic model, described. Categorization experiments with human subjects are analyzed from the neurodynamical and Platonic model points of view

    Toward Cultural Oncology: The Evolutionary Information Dynamics of Cancer

    Get PDF
    'Racial' disparities among cancers, particularly of the breast and prostate, are something of a mystery. For the US, in the face of slavery and its sequelae, centuries of interbreeding have greatly leavened genetic differences between 'Blacks' and 'whites', but marked contrasts in disease prevalence and progression persist. 'Adjustment' for socioeconomic status and lifestyle, while statistically accounting for much of the variance in breast cancer, only begs the question of ultimate causality. Here we propose a more basic biological explanation that extends the theory of immune cognition to include elaborate tumor control mechanisms constituting the principal selection pressure acting on pathologically mutating cell clones. The interplay between them occurs in the context of an embedding, highly structured, system of culturally specific psychosocial stress which we find is able to literally write an image of itself onto disease progression. The dynamics are analogous to punctuated equilibrium in simple evolutionary proces

    Inertial Load Compensation by a Model Spinal Circuit During Single Joint Movement

    Full text link
    Office of Naval Research (N00014-92-J-1309); CONACYT (Mexico) (63462

    Culture and Cancer

    Get PDF
    Genetic mechanisms, since they broadly involve information transmission, should be translatable into information dynamics formalism. From this perspective we reconsider the adaptive mutator, one possible means of 'second order selection' by which a highly structured 'language' of environment and development writes itself onto the variation upon which evolutionary selection and tumorigenesis operate. Our approach uses recent results in the spirit of the Large Deviations Program of applied probability that permit transfer of phase transition approaches from statistical mechanics to information theory, generating evolutionary and developmental punctuation in what we claim to be a highly natural manner

    Adaptive Neural Models of Queuing and Timing in Fluent Action

    Full text link
    Temporal structure in skilled, fluent action exists at several nested levels. At the largest scale considered here, short sequences of actions that are planned collectively in prefrontal cortex appear to be queued for performance by a cyclic competitive process that operates in concert with a parallel analog representation that implicitly specifies the relative priority of elements of the sequence. At an intermediate scale, single acts, like reaching to grasp, depend on coordinated scaling of the rates at which many muscles shorten or lengthen in parallel. To ensure success of acts such as catching an approaching ball, such parallel rate scaling, which appears to be one function of the basal ganglia, must be coupled to perceptual variables, such as time-to-contact. At a fine scale, within each act, desired rate scaling can be realized only if precisely timed muscle activations first accelerate and then decelerate the limbs, to ensure that muscle length changes do not under- or over-shoot the amounts needed for the precise acts. Each context of action may require a much different timed muscle activation pattern than similar contexts. Because context differences that require different treatment cannot be known in advance, a formidable adaptive engine-the cerebellum-is needed to amplify differences within, and continuosly search, a vast parallel signal flow, in order to discover contextual "leading indicators" of when to generate distinctive parallel patterns of analog signals. From some parts of the cerebellum, such signals controls muscles. But a recent model shows how the lateral cerebellum, such signals control muscles. But a recent model shows how the lateral cerebellum may serve the competitive queuing system (in frontal cortex) as a repository of quickly accessed long-term sequence memories. Thus different parts of the cerebellum may use the same adaptive engine system design to serve the lowest and the highest of the three levels of temporal structure treated. If so, no one-to-one mapping exists between levels of temporal structure and major parts of the brain. Finally, recent data cast doubt on network-delay models of cerebellar adaptive timing.National Institute of Mental Health (R01 DC02852
    • 

    corecore