270 research outputs found

    Energy-efficient non-orthogonal multiple access for wireless communication system

    Get PDF
    Non-orthogonal multiple access (NOMA) has been recognized as a potential solution for enhancing the throughput of next-generation wireless communications. NOMA is a potential option for 5G networks due to its superiority in providing better spectrum efficiency (SE) compared to orthogonal multiple access (OMA). From the perspective of green communication, energy efficiency (EE) has become a new performance indicator. A systematic literature review is conducted to investigate the available energy efficient approach researchers have employed in NOMA. We identified 19 subcategories related to EE in NOMA out of 108 publications where 92 publications are from the IEEE website. To help the reader comprehend, a summary for each category is explained and elaborated in detail. From the literature review, it had been observed that NOMA can enhance the EE of wireless communication systems. At the end of this survey, future research particularly in machine learning algorithms such as reinforcement learning (RL) and deep reinforcement learning (DRL) for NOMA are also discussed

    Simultaneous Wireless Information and Power Transfer for Decode-and-Forward Multi-Hop Relay Systems in Energy-Constrained IoT Networks

    Full text link
    This paper studies a multi-hop decode-and-forward (DF) simultaneous wireless information and power transfer (SWIPT) system where a source sends data to a destination with the aid of multi-hop relays which do not depend on an external energy source. To this end, we apply power splitting (PS) based SWIPT relaying protocol so that the relays can harvest energy from the received signals from the previous hop to reliably forward the information of the source to the destination. We aim to solve two optimization problems relevant to our system model. First, we minimize the transmit power at the source under the individual quality-of-service (QoS) threshold constraints of the relays and the destination nodes by optimizing PS ratios at the relays. The second is to maximize the minimum system achievable rate by optimizing the PS ratio at each relay. Based on convex optimization techniques, the globally optimal PS ratio solution is obtained in closed-form for both problems. By setting the QoS threshold constraint the same for each node for the source transmit power problem, we discovered that either the minimum source transmit power or the maximum system throughput can be found using the same approach. Numerical results demonstrate the superiority of the proposed optimal SWIPT PS design over conventional fixed PS ratio schemes.Comment: 14 pages, 14 figures, Accepted for Publication in IEEE Internet of Things Journa

    Relaying in the Internet of Things (IoT): A Survey

    Get PDF
    The deployment of relays between Internet of Things (IoT) end devices and gateways can improve link quality. In cellular-based IoT, relays have the potential to reduce base station overload. The energy expended in single-hop long-range communication can be reduced if relays listen to transmissions of end devices and forward these observations to gateways. However, incorporating relays into IoT networks faces some challenges. IoT end devices are designed primarily for uplink communication of small-sized observations toward the network; hence, opportunistically using end devices as relays needs a redesign of both the medium access control (MAC) layer protocol of such end devices and possible addition of new communication interfaces. Additionally, the wake-up time of IoT end devices needs to be synchronized with that of the relays. For cellular-based IoT, the possibility of using infrastructure relays exists, and noncellular IoT networks can leverage the presence of mobile devices for relaying, for example, in remote healthcare. However, the latter presents problems of incentivizing relay participation and managing the mobility of relays. Furthermore, although relays can increase the lifetime of IoT networks, deploying relays implies the need for additional batteries to power them. This can erode the energy efficiency gain that relays offer. Therefore, designing relay-assisted IoT networks that provide acceptable trade-offs is key, and this goes beyond adding an extra transmit RF chain to a relay-enabled IoT end device. There has been increasing research interest in IoT relaying, as demonstrated in the available literature. Works that consider these issues are surveyed in this paper to provide insight into the state of the art, provide design insights for network designers and motivate future research directions

    UAV-Enabled SWIPT in IoT Networks for Emergency Communications

    Get PDF
    Energy-limited devices and connectivity in complicated environments are two main challenges for Internet of Things (IoT)-enabled mobile networks, especially when IoT devices are distributed in a disaster area. Unmanned aerial vehicle (UAV)-enabled simultaneous wireless information and power transfer (SWIPT) is emerging as a promising technique to tackle the above problems. In this article, we establish an emergency communications framework of UAV-enabled SWIPT for IoT networks, where the disaster scenarios are classified into three cases, namely, dense areas, wide areas and emergency areas. First, to realize wireless power transfer for IoT devices in dense areas, a UAV-enabled wireless power transfer system is considered where a UAV acts as a wireless charger and delivers energy to a set of energy receivers. Then, a joint trajectory planning and resource scheduling scheme for a multi-UAVs system is discussed to provide wireless services for IoT devices in wide areas. Furthermore, an intelligent prediction mechanism is designed to predict service requirements (i.e., data transmission and battery charging) of the devices in emergency areas, and accordingly, a dynamic path planning scheme is established to improve the energy efficiency (EE) of the system. Simulation results demonstrate the effectiveness of the above schemes. Finally, potential research directions and challenges are also discussed

    Extending Wireless Powered Communication Networks for Future Internet of Things

    Get PDF
    Energy limitation has always been a major concern for long-term operation of wireless networks. With today's exponential growth of wireless technologies and the rapid movement towards the so-called Internet of Things (IoT), the need for a reliable energy supply is more tangible than ever. Recently, energy harvesting has gained considerable attention in research communities as a sustainable solution for prolonging the lifetime of wireless networks. Beside conventional energy harvesting sources such as solar, wind, vibration, etc. harvesting energy from radio frequency (RF) signals has drawn significant research interest in recent years as a promising way to overcome the energy bottleneck. Lately, the integration of RF energy transfer with wireless communication networks has led to the emergence of an interesting research area, namely, wireless powered communication network (WPCN), where network users are powered by a hybrid access point (HAP) which transfers wireless energy to the users in addition to serving the functionalities of a conventional access point. The primary aim of this thesis is to extend the baseline model of WPCN to a dual-hop WPCN (DH-WPCN) in which a number of energy-limited relays are in charge of assisting the information exchange between energy-stable users and the HAP. Unlike most of the existing research in this area which has merely focused on designing methods and protocols for uplink communication, we study both uplink and downlink information transmission in the DH-WPCN. We investigate sum-throughput maximization problems in both directions and propose algorithms for optimizing the values of the related parameters. We also tackle the doubly near-far problem which occurs due to unequal distance of the relays from the HAP by proposing a fairness enhancement algorithm which guarantees throughput fairness among all users

    IEEE Access Special Section Editorial: Wirelessly Powered Networks, and Technologies

    Get PDF
    Wireless Power Transfer (WPT) is, by definition, a process that occurs in any system where electrical energy is transmitted from a power source to a load without the connection of electrical conductors. WPT is the driving technology that will enable the next stage in the current consumer electronics revolution, including battery-less sensors, passive RF identification (RFID), passive wireless sensors, the Internet of Things and 5G, and machine-to-machine solutions. WPT-enabled devices can be powered by harvesting energy from the surroundings, including electromagnetic (EM) energy, leading to a new communication networks paradigm, the Wirelessly Powered Networks

    DESIGN AND OPTIMIZATION OF SIMULTANEOUS WIRELESS INFORMATION AND POWER TRANSFER SYSTEMS

    Get PDF
    The recent trends in the domain of wireless communications indicate severe upcoming challenges, both in terms of infrastructure as well as design of novel techniques. On the other hand, the world population keeps witnessing or hearing about new generations of mobile/wireless technologies within every half to one decade. It is certain the wireless communication systems have enabled the exchange of information without any physical cable(s), however, the dependence of the mobile devices on the power cables still persist. Each passing year unveils several critical challenges related to the increasing capacity and performance needs, power optimization at complex hardware circuitries, mobility of the users, and demand for even better energy efficiency algorithms at the wireless devices. Moreover, an additional issue is raised in the form of continuous battery drainage at these limited-power devices for sufficing their assertive demands. In this regard, optimal performance at any device is heavily constrained by either wired, or an inductive based wireless recharging of the equipment on a continuous basis. This process is very inconvenient and such a problem is foreseen to persist in future, irrespective of the wireless communication method used. Recently, a promising idea for simultaneous wireless radio-frequency (RF) transmission of information and energy came into spotlight during the last decade. This technique does not only guarantee a more flexible recharging alternative, but also ensures its co-existence with any of the existing (RF-based) or alternatively proposed methods of wireless communications, such as visible light communications (VLC) (e.g., Light Fidelity (Li-Fi)), optical communications (e.g., LASER-equipped communication systems), and far-envisioned quantum-based communication systems. In addition, this scheme is expected to cater to the needs of many current and future technologies like wearable devices, sensors used in hazardous areas, 5G and beyond, etc. This Thesis presents a detailed investigation of several interesting scenarios in this direction, specifically concerning design and optimization of such RF-based power transfer systems. The first chapter of this Thesis provides a detailed overview of the considered topic, which serves as the foundation step. The details include the highlights about its main contributions, discussion about the adopted mathematical (optimization) tools, and further refined minutiae about its organization. Following this, a detailed survey on the wireless power transmission (WPT) techniques is provided, which includes the discussion about historical developments of WPT comprising its present forms, consideration of WPT with wireless communications, and its compatibility with the existing techniques. Moreover, a review on various types of RF energy harvesting (EH) modules is incorporated, along with a brief and general overview on the system modeling, the modeling assumptions, and recent industrial considerations. Furthermore, this Thesis work has been divided into three main research topics, as follows. Firstly, the notion of simultaneous wireless information and power transmission (SWIPT) is investigated in conjunction with the cooperative systems framework consisting of single source, multiple relays and multiple users. In this context, several interesting aspects like relay selection, multi-carrier, and resource allocation are considered, along with problem formulations dealing with either maximization of throughput, maximization of harvested energy, or both. Secondly, this Thesis builds up on the idea of transmit precoder design for wireless multigroup multicasting systems in conjunction with SWIPT. Herein, the advantages of adopting separate multicasting and energy precoder designs are illustrated, where we investigate the benefits of multiple antenna transmitters by exploiting the similarities between broadcasting information and wirelessly transferring power. The proposed design does not only facilitates the SWIPT mechanism, but may also serve as a potential candidate to complement the separate waveform designing mechanism with exclusive RF signals meant for information and power transmissions, respectively. Lastly, a novel mechanism is developed to establish a relationship between the SWIPT and cache-enabled cooperative systems. In this direction, benefits of adopting the SWIPT-caching framework are illustrated, with special emphasis on an enhanced rate-energy (R-E) trade-off in contrast to the traditional SWIPT systems. The common notion in the context of SWIPT revolves around the transmission of information, and storage of power. In this vein, the proposed work investigates the system wherein both information and power can be transmitted and stored. The Thesis finally concludes with insights on the future directions and open research challenges associated with the considered framework
    corecore