173 research outputs found

    Joint Resource Optimization for Multicell Networks with Wireless Energy Harvesting Relays

    Get PDF
    This paper first considers a multicell network deployment where the base station (BS) of each cell communicates with its cell-edge user with the assistance of an amplify-and-forward (AF) relay node. Equipped with a power splitter and a wireless energy harvester, the self-sustaining relay scavenges radio frequency (RF) energy from the received signals to process and forward the information. Our aim is to develop a resource allocation scheme that jointly optimizes (i) BS transmit powers, (ii) received power splitting factors for energy harvesting and information processing at the relays, and (iii) relay transmit powers. In the face of strong intercell interference and limited radio resources, we formulate three highly-nonconvex problems with the objectives of sum-rate maximization, max-min throughput fairness and sum-power minimization. To solve such challenging problems, we propose to apply the successive convex approximation (SCA) approach and devise iterative algorithms based on geometric programming and difference-of-convex-functions programming. The proposed algorithms transform the nonconvex problems into a sequence of convex problems, each of which is solved very efficiently by the interior-point method. We prove that our algorithms converge to the locally optimal solutions that satisfy the Karush-Kuhn-Tucker conditions of the original nonconvex problems. We then extend our results to the case of decode-and-forward (DF) relaying with variable timeslot durations. We show that our resource allocation solutions in this case offer better throughput than that of the AF counterpart with equal timeslot durations, albeit at a higher computational complexity. Numerical results confirm that the proposed joint optimization solutions substantially improve the network performance, compared with cases where the radio resource parameters are individually optimized

    Sum throughput maximization for heterogeneous multicell networks with RF-powered relays

    Get PDF
    This paper considers a heterogeneous multicell network where the base station (BS) in each cell communicates with its cell-edge user with the assistance of an amplify-and-forward relay node. Equipped with a power splitter and a wireless energy harvester, the relay scavenges RF energy from the received signals to process and forward the information. In the face of strong intercell interference and limited radio resources, we develop a resource allocation scheme that jointly optimizes (i) BS transmit powers, (ii) power splitting factors for energy harvesting and information processing at the relays, and (iii) relay transmit powers. To solve the highly non-convex problem formulation of sum-rate maximization, we propose to apply the successive convex approximation (SCA) approach and devise an iterative algorithm based on geometric programming. The proposed algorithm transforms the nonconvex problem into a sequence of convex problems, each of which is solved very efficiently by the interior-point method. We prove that our developed algorithm converges to an optimal solution that satisfies the Karush-Kuhn-Tucker conditions of the original nonconvex problem. Numerical results confirm that our joint optimization solution substantially improves the network performance, compared to the existing solution wherein only the received power splitting factors at the relays are optimizedARC Discovery Projects Grant DP14010113

    Joint Wireless Information and Power Transfer for an Autonomous Multiple Antenna Relay System

    Get PDF
    Considering a three-node multiple antenna relay system, this paper proposes a two-phase amplify-and-forward (AF) relaying protocol, which enables the autonomous relay to simultaneously harvest wireless power from the source information signal and from an energy signal conveyed by the destination. We first study this energy-flow-assisted (EFA) relaying in a single-input single-output (SISO) relay system and aim at maximizing the rate. By transforming the optimization problem into an equivalent convex form, a global optimum can be found. We then extend the protocol to a multiple antenna relay system. The relay processing matrix is optimized to maximize the rate. The optimization problem can be efficiently solved by eigenvalue decomposition, after linear algebra manipulation. It is observed that the benefits of the energy flow are interestingly shown only in the multiple antenna case, and it is revealed that the received information signal and the energy leakage at the relay can be nearly separated by making use of the signal space, such that the desired signal can be amplified with a larger coefficient.Comment: Accepted to IEEE Communications Letter

    A Tutorial on Nonorthogonal Multiple Access for 5G and Beyond

    Full text link
    Today's wireless networks allocate radio resources to users based on the orthogonal multiple access (OMA) principle. However, as the number of users increases, OMA based approaches may not meet the stringent emerging requirements including very high spectral efficiency, very low latency, and massive device connectivity. Nonorthogonal multiple access (NOMA) principle emerges as a solution to improve the spectral efficiency while allowing some degree of multiple access interference at receivers. In this tutorial style paper, we target providing a unified model for NOMA, including uplink and downlink transmissions, along with the extensions tomultiple inputmultiple output and cooperative communication scenarios. Through numerical examples, we compare the performances of OMA and NOMA networks. Implementation aspects and open issues are also detailed.Comment: 25 pages, 10 figure

    Energy-efficiency for MISO-OFDMA based user-relay assisted cellular networks

    Get PDF
    The concept of improving energy-efficiency (EE) without sacrificing the service quality has become important nowadays. The combination of orthogonal frequency-division multiple-access (OFDMA) multi-antenna transmission technology and relaying is one of the key technologies to deliver the promise of reliable and high-data-rate coverage in the most cost-effective manner. In this paper, EE is studied for the downlink multiple-input single-output (MISO)-OFDMA based user-relay assisted cellular networks. EE maximization is formulated for decode and forward (DF) relaying scheme with the consideration of both transmit and circuit power consumption as well as the data rate requirements for the mobile users. The quality of-service (QoS)-constrained EE maximization, which is defined for multi-carrier, multi-user, multi-relay and multi-antenna networks, is a non-convex and combinatorial problem so it is hard to tackle. To solve this difficult problem, a radio resource management (RRM) algorithm that solves the subcarrier allocation, mode selection and power allocation separately is proposed. The efficiency of the proposed algorithm is demonstrated by numerical results for different system parameter

    User Association in 5G Networks: A Survey and an Outlook

    Get PDF
    26 pages; accepted to appear in IEEE Communications Surveys and Tutorial
    corecore