680 research outputs found

    Applications of Repeated Games in Wireless Networks: A Survey

    Full text link
    A repeated game is an effective tool to model interactions and conflicts for players aiming to achieve their objectives in a long-term basis. Contrary to static noncooperative games that model an interaction among players in only one period, in repeated games, interactions of players repeat for multiple periods; and thus the players become aware of other players' past behaviors and their future benefits, and will adapt their behavior accordingly. In wireless networks, conflicts among wireless nodes can lead to selfish behaviors, resulting in poor network performances and detrimental individual payoffs. In this paper, we survey the applications of repeated games in different wireless networks. The main goal is to demonstrate the use of repeated games to encourage wireless nodes to cooperate, thereby improving network performances and avoiding network disruption due to selfish behaviors. Furthermore, various problems in wireless networks and variations of repeated game models together with the corresponding solutions are discussed in this survey. Finally, we outline some open issues and future research directions.Comment: 32 pages, 15 figures, 5 tables, 168 reference

    Energy Efficiency in Multi-hop CDMA Networks: A Game Theoretic Analysis

    Full text link
    A game-theoretic analysis is used to study the effects of receiver choice on the energy efficiency of multi-hop networks in which the nodes communicate using Direct-Sequence Code Division Multiple Access (DS-CDMA). A Nash equilibrium of the game in which the network nodes can choose their receivers as well as their transmit powers to maximize the total number of bits they transmit per unit of energy is derived. The energy efficiencies resulting from the use of different linear multiuser receivers in this context are compared, looking at both the non-cooperative game and the Pareto optimal solution. For analytical ease, particular attention is paid to asymptotically large networks. Significant gains in energy efficiency are observed when multiuser receivers, particularly the linear minimum mean-square error (MMSE) receiver, are used instead of conventional matched filter receivers.Comment: To appear in the Proceedings of the Workshop on Multi-Layer Modelling and Design of Multi-Hop Wireless Networks (MLMD 06), Minneapolis, MN, July 12 - 15, 200

    Stability and Distributed Power Control in MANETs with Outages and Retransmissions

    Full text link
    In the current work the effects of hop-by-hop packet loss and retransmissions via ARQ protocols are investigated within a Mobile Ad-hoc NET-work (MANET). Errors occur due to outages and a success probability function is related to each link, which can be controlled by power and rate allocation. We first derive the expression for the network's capacity region, where the success function plays a critical role. Properties of the latter as well as the related maximum goodput function are presented and proved. A Network Utility Maximization problem (NUM) with stability constraints is further formulated which decomposes into (a) the input rate control problem and (b) the scheduling problem. Under certain assumptions problem (b) is relaxed to a weighted sum maximization problem with number of summants equal to the number of nodes. This further allows the formulation of a non-cooperative game where each node decides independently over its transmitting power through a chosen link. Use of supermodular game theory suggests a price based algorithm that converges to a power allocation satisfying the necessary optimality conditions of (b). Implementation issues are considered so that minimum information exchange between interfering nodes is required. Simulations illustrate that the suggested algorithm brings near optimal results.Comment: 25 pages, 6 figures, 1 table, submitted to the IEEE Trans. on Communication

    Game-theoretic Resource Allocation Methods for Device-to-Device (D2D) Communication

    Full text link
    Device-to-device (D2D) communication underlaying cellular networks allows mobile devices such as smartphones and tablets to use the licensed spectrum allocated to cellular services for direct peer-to-peer transmission. D2D communication can use either one-hop transmission (i.e., in D2D direct communication) or multi-hop cluster-based transmission (i.e., in D2D local area networks). The D2D devices can compete or cooperate with each other to reuse the radio resources in D2D networks. Therefore, resource allocation and access for D2D communication can be treated as games. The theories behind these games provide a variety of mathematical tools to effectively model and analyze the individual or group behaviors of D2D users. In addition, game models can provide distributed solutions to the resource allocation problems for D2D communication. The aim of this article is to demonstrate the applications of game-theoretic models to study the radio resource allocation issues in D2D communication. The article also outlines several key open research directions.Comment: Accepted. IEEE Wireless Comms Mag. 201

    Distributed Power Control Techniques Based on Game Theory for Wideband Wireless Networks

    Get PDF
    This thesis describes a theoretical framework for the design and the analysis of distributed (decentralized) power control algorithms for high-throughput wireless networks using ultrawideband (UWB) technologies. The tools of game theory are shown to be expedient for deriving scalable, energy-efficient, distributed power control schemes to be applied to a population of battery-operated user terminals in a rich multipath environment. In particular, the power control issue is modeled as a noncooperative game in which each user chooses its transmit power so as to maximize its own utility, which is defined as the ratio of throughput to transmit power. Although distributed (noncooperative) control is known to be suboptimal with respect to the optimal centralized (cooperative) solution, it is shown via large-system analysis that the game-theoretic distributed algorithm based on Nash equilibrium exhibits negligible performance degradation with respect to the centralized socially optimal configuration. The framework described here is general enough to also encompass the analysis of code division multiple access (CDMA) systems and to show that UWB slightly outperforms CDMA in terms of achieved utility at the Nash equilibrium

    Energy-Efficient Resource Allocation in Wireless Networks: An Overview of Game-Theoretic Approaches

    Full text link
    An overview of game-theoretic approaches to energy-efficient resource allocation in wireless networks is presented. Focusing on multiple-access networks, it is demonstrated that game theory can be used as an effective tool to study resource allocation in wireless networks with quality-of-service (QoS) constraints. A family of non-cooperative (distributed) games is presented in which each user seeks to choose a strategy that maximizes its own utility while satisfying its QoS requirements. The utility function considered here measures the number of reliable bits that are transmitted per joule of energy consumed and, hence, is particulary suitable for energy-constrained networks. The actions available to each user in trying to maximize its own utility are at least the choice of the transmit power and, depending on the situation, the user may also be able to choose its transmission rate, modulation, packet size, multiuser receiver, multi-antenna processing algorithm, or carrier allocation strategy. The best-response strategy and Nash equilibrium for each game is presented. Using this game-theoretic framework, the effects of power control, rate control, modulation, temporal and spatial signal processing, carrier allocation strategy and delay QoS constraints on energy efficiency and network capacity are quantified.Comment: To appear in the IEEE Signal Processing Magazine: Special Issue on Resource-Constrained Signal Processing, Communications and Networking, May 200

    Joint iterative beamforming and power adaptation for MIMO ad hoc networks

    Get PDF
    In this paper, we present distributed cooperative and regret-matching-based learning schemes for joint transmit power and beamforming selection for multiple antenna wireless ad hoc networks operating in a multi-user interference environment. Under the total network power minimization criterion, a joint iterative approach is proposed to reduce the mutual interference at each node while ensuring a constant received signal-to-interference and noise ratio at each receiver. In cooperative and regret-matching-based power minimization algorithms, transmit beamformers are selected from a predefined codebook to minimize the total power. By selecting transmit beamformers judiciously and performing power adaptation, the cooperative algorithm is shown to converge to a pure strategy Nash equilibrium with high probability in the interference impaired network. The proposed cooperative and regret-matching-based distributed algorithms are also compared with centralized solutions through simulation results
    corecore