1,281 research outputs found

    Vehicle as a Service (VaaS): Leverage Vehicles to Build Service Networks and Capabilities for Smart Cities

    Full text link
    Smart cities demand resources for rich immersive sensing, ubiquitous communications, powerful computing, large storage, and high intelligence (SCCSI) to support various kinds of applications, such as public safety, connected and autonomous driving, smart and connected health, and smart living. At the same time, it is widely recognized that vehicles such as autonomous cars, equipped with significantly powerful SCCSI capabilities, will become ubiquitous in future smart cities. By observing the convergence of these two trends, this article advocates the use of vehicles to build a cost-effective service network, called the Vehicle as a Service (VaaS) paradigm, where vehicles empowered with SCCSI capability form a web of mobile servers and communicators to provide SCCSI services in smart cities. Towards this direction, we first examine the potential use cases in smart cities and possible upgrades required for the transition from traditional vehicular ad hoc networks (VANETs) to VaaS. Then, we will introduce the system architecture of the VaaS paradigm and discuss how it can provide SCCSI services in future smart cities, respectively. At last, we identify the open problems of this paradigm and future research directions, including architectural design, service provisioning, incentive design, and security & privacy. We expect that this paper paves the way towards developing a cost-effective and sustainable approach for building smart cities.Comment: 32 pages, 11 figure

    Resource offload consolidation based on deep-reinforcement learning approach in cyber-physical systems.

    Get PDF
    In cyber-physical systems, it is advantageous to leverage cloud with edge resources to distribute the workload for processing and computing user data at the point of generation. Services offered by cloud are not flexible enough against variations in the size of underlying data, which leads to increased latency, violation of deadline and higher cost. On the other hand, resolving above-mentioned issues with edge devices with limited resources is also challenging. In this work, a novel reinforcement learning algorithm, Capacity-Cost Ratio-Reinforcement Learning (CCR-RL), is proposed which considers both resource utilization and cost for the target cyber-physical systems. In CCR-RL, the task offloading decision is made considering data arrival rate, edge device computation power, and underlying transmission capacity. Then, a deep learning model is created to allocate resources based on the underlying communication and computation rate. Moreover, new algorithms are proposed to regulate the allocation of communication and computation resources for the workload among edge devices and edge servers. The simulation results demonstrate that the proposed method can achieve a minimal latency and a reduced processing cost compared to the state-of-the-art schemes

    The Four-C Framework for High Capacity Ultra-Low Latency in 5G Networks: A Review

    Get PDF
    Network latency will be a critical performance metric for the Fifth Generation (5G) networks expected to be fully rolled out in 2020 through the IMT-2020 project. The multi-user multiple-input multiple-output (MU-MIMO) technology is a key enabler for the 5G massive connectivity criterion, especially from the massive densification perspective. Naturally, it appears that 5G MU-MIMO will face a daunting task to achieve an end-to-end 1 ms ultra-low latency budget if traditional network set-ups criteria are strictly adhered to. Moreover, 5G latency will have added dimensions of scalability and flexibility compared to prior existing deployed technologies. The scalability dimension caters for meeting rapid demand as new applications evolve. While flexibility complements the scalability dimension by investigating novel non-stacked protocol architecture. The goal of this review paper is to deploy ultra-low latency reduction framework for 5G communications considering flexibility and scalability. The Four (4) C framework consisting of cost, complexity, cross-layer and computing is hereby analyzed and discussed. The Four (4) C framework discusses several emerging new technologies of software defined network (SDN), network function virtualization (NFV) and fog networking. This review paper will contribute significantly towards the future implementation of flexible and high capacity ultra-low latency 5G communications

    Power-constrained edge computing with maximum processing capacity for IoT networks

    Get PDF
    Mobile edge computing (MEC) plays an important role in next-generation networks. It aims to enhance processing capacity and offer low-latency computing services for Internet of Things (IoT). In this paper, we investigate a resource allocation policy to maximize the available processing capacity (APC) for MEC IoT networks with constrained power and unpredictable tasks. First, the APC which describes the computing ability and speed of a served IoT device is defined. Then its expression is derived by analyzing the relationship between task partitioning and resource allocation. Based on this expression, the power allocation solution for the single-user MEC system with a single subcarrier is studied and the factors that affect the APC improvement are considered. For the multiuser MEC system, an optimization problem of APC with a general utility function is formulated and several fundamental criteria for resource allocation are derived. By leveraging these criteria, a binarysearch water-filling algorithm is proposed to solve the power allocation between local CPU and multiple subcarriers, and a suboptimal algorithm is proposed to assign the subcarriers among users. Finally, the validity of the proposed algorithms is verified by Monte Carlo simulation
    corecore