9 research outputs found

    On the Effectiveness of OTFS for Joint Radar Parameter Estimation and Communication

    Get PDF
    We consider a joint radar parameter estimation and communication system using orthogonal time frequency space (OTFS) modulation. The scenario is motivated by vehicular applications where a vehicle (or the infrastructure) equipped with a mono-static radar wishes to communicate data to its target receiver, while estimating parameters of interest related to this receiver. Provided that the radar-equipped transmitter is ready to send data to its target receiver, this setting naturally assumes that the receiver has been already detected. In a point-to-point communication setting over multipath time-frequency selective channels, we study the joint radar and communication system from two perspectives, i.e., the radar parameter estimation at the transmitter as well as the data detection at the receiver. For the radar parameter estimation part, we derive an efficient approximated Maximum Likelihood algorithm and the corresponding CramΓ©r-Rao lower bound for range and velocity estimation. Numerical examples demonstrate that multi-carrier digital formats such as OTFS can achieve as accurate radar estimation as state-of-the-art radar waveforms such as frequency-modulated continuous wave (FMCW). For the data detection part, we focus on separate detection and decoding and consider a soft-output detector that exploits efficiently the channel sparsity in the Doppler-delay domain. We quantify the detector performance in terms of its pragmatic capacity, i.e., the achievable rate of the channel induced by the signal constellation and the detector soft-output. Simulations show that the proposed scheme outperforms concurrent state-of-the-art solutions. Overall, our work shows that a suitable digitally modulated waveform enables to efficiently operate joint radar parameter estimation and communication by achieving full information rate of the modulation and near-optimal radar estimation performance. Furthermore, OTFS appears to be particularly suited to the scope

    ΠŸΡ€ΠΎΡΡ‚Ρ€Π°Π½ΡΡ‚Π²Π΅Π½Π½ΠΎΠ΅ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ΅ ΠΊΠΎΠ΄ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ сигналов Π² совмСстной систСмС Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΈ ΠΈ многоадрСсной радиосвязи

    Get PDF
    Introduction. This paper presents optimization methods for the amplitude-phase distribution in a transmitting antenna array in a system with a common signal for multicast data transmission and radar sensing in a given sector of space. Two approaches are considered for the choice of an objective function for the optimization problem. The first approach involves minimizing the transmitted power for a given quality of user service and radar surveillance. The second approach involves optimizing the quality of service for the worst radar and communication channel under a given power budget. The value that determines the quality of service is the signal-to-noise ratio, for both communication and radar.Aim. Π’o solve the optimization problem of spatial linear coding of signals in a joint multicast radar and communication system, which shares a common signal.Materials and methods. Optimization of spatial linear coding in a joint radio radar and communication system was carried out by the methods of statistical theory and optimization theory using the numerical solution of optimization problems. The performance characteristics of the system were analyzed by Monte Carlo simulation. Statistical simulation was performed in the MATLAB environment using standard tools, as well as the CVX package for the numerical solution of convex optimization problems.Results. Optimization problems were formulated based on the criteria of the minimum radiated power and the maximum signal-to-noise ratio in the worst channel. A limitation on the radiated power of individual antenna channels was used for both cases. Optimization problems were approximately reduced to convex problems with semidefinite constraints, which could be solved using the wellknown interior point algorithm with polynomial complexity. The performed statistical simulation produced optimal performance characteristics of a joint system, including the total power versus the threshold signal-to-noise ratio and the signal-to-noise ratio for the worst channel versus the power budget.Conclusion. The proposed numerical optimization methods for spatial linear coding in a transmitting antenna array can be recommended when designing joint radar communication systems.Π’Π²Π΅Π΄Π΅Π½ΠΈΠ΅. Π’ ΡΡ‚Π°Ρ‚ΡŒΠ΅ Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Π°Ρ Π·Π°Π΄Π°Ρ‡Π° Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ Π°ΠΌΠΏΠ»ΠΈΡ‚ΡƒΠ΄Π½ΠΎ-Ρ„Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ распрСдСлСния Π² ΠΏΠ΅Ρ€Π΅Π΄Π°ΡŽΡ‰Π΅ΠΉ Π°Π½Ρ‚Π΅Π½Π½ΠΎΠΉ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΊΠ΅ Π² систСмС, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΎΠ±Ρ‰ΠΈΠΉ сигнал для многоадрСсной ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ зондирования Π² Π·Π°Π΄Π°Π½Π½ΠΎΠΌ сСкторС пространства. Π’Ρ‹Π±ΠΎΡ€ Ρ†Π΅Π»Π΅Π²ΠΎΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ для ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡ΠΈ основываСтся Π½Π° Π΄Π²ΡƒΡ… ΠΏΠΎΠ΄Ρ…ΠΎΠ΄Π°Ρ…. ΠŸΠ΅Ρ€Π²Ρ‹ΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² ΠΌΠΈΠ½ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΈΠ·Π»ΡƒΡ‡Π°Π΅ΠΌΠΎΠΉ мощности ΠΏΡ€ΠΈ Π·Π°Π΄Π°Π½Π½ΠΎΠΌ качСствС обслуТивания ΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚Π΅Π»Π΅ΠΉ ΠΈ Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ наблюдСния. Π’Ρ‚ΠΎΡ€ΠΎΠΉ ΠΏΠΎΠ΄Ρ…ΠΎΠ΄ основан Π½Π° ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ качСства обслуТивания Π² Π½Π°ΠΈΡ…ΡƒΠ΄ΡˆΠ΅ΠΌ ΠΊΠ°Π½Π°Π»Π΅ ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ Π΄Π°Π½Π½Ρ‹Ρ… ΠΈ Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ наблюдСния ΠΏΡ€ΠΈ Π·Π°Π΄Π°Π½Π½ΠΎΠΌ Π±ΡŽΠ΄ΠΆΠ΅Ρ‚Π΅ мощности. Π’Π΅Π»ΠΈΡ‡ΠΈΠ½ΠΎΠΉ, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΡΡŽΡ‰Π΅ΠΉ качСство обслуТивания, являСтся ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠ΅ сигнал/ΡˆΡƒΠΌ ΠΊΠ°ΠΊ для ΠΏΠ΅Ρ€Π΅Π΄Π°Ρ‡ΠΈ Π΄Π°Π½Π½Ρ‹Ρ…, Ρ‚Π°ΠΊ ΠΈ для Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΈ.ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹. РСшСниС Π·Π°Π΄Π°Ρ‡ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ пространствСнного Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ кодирования сигналов Π² совмСстной систСмС многоадрСсной радиосвязи ΠΈ Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΈ, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΎΠ±Ρ‰ΠΈΠΉ Π²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠΉ сигнал.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΡ пространствСнного Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ кодирования Π² совмСстной систСмС радиосвязи ΠΈ Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΈ основываСтся Π½Π° ΠΌΠ΅Ρ‚ΠΎΠ΄Π°Ρ… статистичСской Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°Ρ… Ρ‚Π΅ΠΎΡ€ΠΈΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΈ с использованиСм числСнного Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡. Π₯арактСристики систСмы Π°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΡŽΡ‚ΡΡ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ матСматичСского модСлирования Π½Π° основС ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠœΠΎΠ½Ρ‚Π΅-ΠšΠ°Ρ€Π»ΠΎ. БтатистичСскоС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ выполняСтся Π² срСдС MATLAB с использованиСм стандартных срСдств, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΠΏΠ°ΠΊΠ΅Ρ‚Π° CVX для числСнного Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹Ρ… ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π‘Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΈΡ€ΠΎΠ²Π°Π½Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ Π½Π° основС ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅Π² ΠΌΠΈΠ½ΠΈΠΌΡƒΠΌΠ° ΠΈΠ·Π»ΡƒΡ‡Π°Π΅ΠΌΠΎΠΉ мощности ΠΈ максимума ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ сигнал/ΡˆΡƒΠΌ Π² Π½Π°ΠΈΡ…ΡƒΠ΄ΡˆΠ΅ΠΌ ΠΊΠ°Π½Π°Π»Π΅. Π’ ΠΎΠ±ΠΎΠΈΡ… случаях ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅Ρ‚ΡΡ ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½ΠΈΠ΅ Π½Π° ΠΈΠ·Π»ΡƒΡ‡Π°Π΅ΠΌΡƒΡŽ ΠΌΠΎΡ‰Π½ΠΎΡΡ‚ΡŒ ΠΎΡ‚Π΄Π΅Π»ΡŒΠ½Ρ‹ΠΌΠΈ Π°Π½Ρ‚Π΅Π½Π½Ρ‹ΠΌΠΈ ΠΊΠ°Π½Π°Π»Π°ΠΌΠΈ. ΠžΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Π΅ Π·Π°Π΄Π°Ρ‡ΠΈ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎ сводятся ΠΊ Π²Ρ‹ΠΏΡƒΠΊΠ»Ρ‹ΠΌ Π·Π°Π΄Π°Ρ‡Π°ΠΌ с ΠΏΠΎΠ»ΡƒΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π½Ρ‹ΠΌΠΈ условиями, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ Ρ€Π΅ΡˆΠ°ΡŽΡ‚ΡΡ с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Ρ…ΠΎΡ€ΠΎΡˆΠΎ извСстного Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌΠ° Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΈΠΌΠ΅ΡŽΡ‰Π΅Π³ΠΎ ΠΏΠΎΠ»ΠΈΠ½ΠΎΠΌΠΈΠ°Π»ΡŒΠ½ΡƒΡŽ ΡΠ»ΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ статистичСскоС ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅, Π² Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ характСристики совмСстной систСмы, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ зависимости ΠΈΠ·Π»ΡƒΡ‡Π°Π΅ΠΌΠΎΠΉ мощности ΠΎΡ‚ ΠΏΠΎΡ€ΠΎΠ³ΠΎΠ²ΠΎΠ³ΠΎ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ сигнал/ΡˆΡƒΠΌ ΠΈ зависимости ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ сигнал/ΡˆΡƒΠΌ Π² Π½Π°ΠΈΡ…ΡƒΠ΄ΡˆΠ΅ΠΌ ΠΊΠ°Π½Π°Π»Π΅ ΠΎΡ‚ Π±ΡŽΠ΄ΠΆΠ΅Ρ‚Π° мощности.Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Ρ‹ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΠ³ΠΎ кодирования Π² Π°Π½Ρ‚Π΅Π½Π½ΠΎΠΉ Ρ€Π΅ΡˆΠ΅Ρ‚ΠΊΠ΅, основанныС Π½Π° числСнном Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠΈΠ·Π°Ρ†ΠΈΠΎΠ½Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ рСкомСндуСтся ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒ ΠΏΡ€ΠΈ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ΅ совмСстной систСмы многоадрСсной радиосвязи ΠΈ Ρ€Π°Π΄ΠΈΠΎΠ»ΠΎΠΊΠ°Ρ†ΠΈΠΈ

    A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From Communications to Sensing and Intelligence

    Full text link
    Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.Comment: Accepted by IEEE JSA
    corecore