5 research outputs found

    An examination of single link failure in an optical network with full grooming

    Get PDF
    This thesis considers a survivable optical network with link-based protection that can survive one fault, has links each with a fixed total bidirectional capacity, and full grooming at each node. An upper bound on the total primary capacity the network can provide is derived from conditions that are necessary but not sufficient to guarantee restoration. An ILP formulation is developed and presented that achieves this bound when possible for a given topology, and tends to spread out backup capacity by insisting on using small cycles to form backup routes. The blocking probability of connections in a network thus protected is compared against the networks blocking probability if protected by a p-Cycle. Simulations showed that the more spread out backup capacity had lower blocking probability than a Hamiltonian p-Cycle. P-Cycles are supplemented by an additional pre-configured structure. The capacity used by non-simple p-cycles and lines are compared against non-pre-configured resource reservation. Examples where lines can be useful are easy to construct. However ILP solutions for protecting the Cost 239 network did not include them

    Design of survivable WDM network based on pre-configured protection cycle

    Get PDF
    Wavelength Division Multiplexing (WDM) is an important technique which allows the trans- port of large quantities of data over optical networks. All optical WDM-based networks have been used to improve overall communication capacity and provide an excellent choice for the design of backbone networks. However, due to the high traffic load that each link can carry in a WDM network, survivability against failures becomes very important. Survivability in this context is the ability of the network to maintain continuity of service against failures, since a failure can lead to huge data losses. In recent years, many survivability mechanisms have been studied and their performance assessed through capacity efficiency, restoration time and restorability. Survivability mechanisms for ring and mesh topologies have received particular attention

    Survivable mesh-network design & optimization to support multiple QoP service classes

    Get PDF
    Every second, vast amounts of data are transferred over communication systems around the world, and as a result, the demands on optical infrastructures are extending beyond the traditional, ring-based architecture. The range of content and services available from the Internet is increasing, and network operations are constantly under pressure to expand their optical networks in order to keep pace with the ever increasing demand for higher speed and more reliable links

    Scalable Column Generation Models and Algorithms for Optical Network Planning Problems

    Get PDF
    Column Generation Method has been proved to be a powerful tool to model and solve large scale optimization problems in various practical domains such as operation management, logistics and computer design. Such a decomposition approach has been also applied in telecommunication for several classes of classical network design and planning problems with a great success. In this thesis, we confirm that Column Generation Methodology is also a powerful tool in solving several contemporary network design problems that come from a rising worldwide demand of heavy traffic (100Gbps, 400Gbps, and 1Tbps) with emphasis on cost-effective and resilient networks. Such problems are very challenging in terms of complexity as well as solution quality. Research in this thesis attacks four challenging design problems in optical networks: design of p-cycles subject to wavelength continuity, design of dependent and independent p-cycles against multiple failures, design of survivable virtual topologies against multiple failures, design of a multirate optical network architecture. For each design problem, we develop a new mathematical models based on Column Generation Decomposition scheme. Numerical results show that Column Generation methodology is the right choice to deal with hard network design problems since it allows us to efficiently solve large scale network instances which have been puzzles for the current state of art. Additionally, the thesis reveals the great flexibility of Column Generation in formulating design problems that have quite different natures as well as requirements. Obtained results in this thesis show that, firstly, the design of p-cycles should be under a wavelength continuity assumption in order to save the converter cost since the difference between the capacity requirement under wavelength conversion vs. under wavelength continuity is insignificant. Secondly, such results which come from our new general design model for failure dependent p-cycles prove the fact that failure dependent p-cycles save significantly spare capacity than failure independent p-cycles. Thirdly, large instances can be quasi-optimally solved in case of survivable topology designs thanks to our new path-formulation model with online generation of augmenting paths. Lastly, the importance of high capacity devices such as 100Gbps transceiver and the impact of the restriction on number of regeneration sites to the provisioning cost of multirate WDM networks are revealed through our new hierarchical Column Generation model

    p-Cycle Based Protection in WDM Mesh Networks

    Get PDF
    Abstract p-Cycle Based Protection in WDM Mesh Networks Honghui Li, Ph.D. Concordia University, 2012 WDM techniques enable single fiber to carry huge amount of data. However, optical WDM networks are prone to failures, and therefore survivability is a very important requirement in the design of optical networks. In the context of network survivability, p-cycle based schemes attracted extensive research interests as they well balance the recovery speed and the capacity efficiency. Towards the design of p-cycle based survivableWDM mesh networks, some issues still need to be addressed. The conventional p-cycle design models and solution methods suffers from scalability issues. Besides, most studies on the design of p-cycle based schemes only cope with single link failures without any concern about single node failures. Moreover, loop backs may exist in the recovery paths along p-cycles, which lead to unnecessary stretching of the recovery path lengths. This thesis investigates the scalable and efficient design of segment p-cycles against single link failures. The optimization models and their solutions rely on large-scale optimization techniques, namely, Column Generation (CG) modeling and solution, where segment pcycle candidates are dynamically generated during the optimization process. To ensure full node protection in the context of link p-cycles, we propose an efficient protection scheme, called node p-cycles, and develop a scalable optimization design model. It is shown that, depending on the network topology, node p-cycles sometimes outperform path p-cycles in iii terms of capacity efficiency. Also, an enhanced segment p-cycle scheme is proposed, entitled segment Np-cycles, for full link and node protection. Again, the CG-based optimization models are developed for the design of segment Np-cycles. Two objectives are considered, minimizing the spare capacity usage and minimizing the CAPEX cost. It is shown that segment Np-cycles can ensure full node protection with marginal extra cost in comparison with segment p-cycles for link protection. Segment Np-cycles provide faster recovery speed than path p-cycles although they are slightly more costly than path p-cycles. Furthermore, we propose the shortcut p-cycle scheme, i.e., p-cycles free of loop backs for full node and link protection, in addition to shortcuts in the protection paths. A CG-based optimization model for the design of shortcut p-cycles is formulated as well. It is shown that, for full node protection, shortcut p-cycles have advantages over path p-cycles with respect to capacity efficiency and recovery speed. We have studied a whole sequence of protection schemes from link p-cycles to path p-cycles, and concluded that the best compromise is the segment Np-cycle scheme for full node protection with respect to capacity efficiency and recovery time. Therefore, this thesis offers to network operators several interesting alternatives to path p-cycles in the design of survivable WDM mesh networks against any single link/node failures
    corecore