8,331 research outputs found

    Joint Symbol-Level Precoding and Reflecting Designs for IRS-Enhanced MU-MISO Systems

    Get PDF
    Intelligent reflecting surfaces (IRSs) have emerged as a revolutionary solution to enhance wireless communications by changing propagation environment in a cost-effective and hardware-efficient fashion. In addition, symbol-level precoding (SLP) has attracted considerable attention recently due to its advantages in converting multiuser interference (MUI) into useful signal energy. Therefore, it is of interest to investigate the employment of IRS in symbol-level precoding systems to exploit MUI in a more effective way by manipulating the multiuser channels. In this article, we focus on joint symbol-level precoding and reflecting designs in IRS-enhanced multiuser multiple-input single-output (MU-MISO) systems. Both power minimization and quality-of-service (QoS) balancing problems are considered. In order to solve the joint optimization problems, we develop an efficient iterative algorithm to decompose them into separate symbol-level precoding and block-level reflecting design problems. An efficient gradient-projection-based algorithm is utilized to design the symbol-level precoding and a Riemannian conjugate gradient (RCG)-based algorithm is employed to solve the reflecting design problem. Simulation results demonstrate the significant performance improvement introduced by the IRS and illustrate the effectiveness of our proposed algorithms

    Power Efficient and Secure Full-Duplex Wireless Communication Systems

    Full text link
    In this paper, we study resource allocation for a full-duplex (FD) radio base station serving multiple half-duplex (HD) downlink and uplink users simultaneously. The considered resource allocation algorithm design is formulated as a non-convex optimization problem taking into account minimum required receive signal-to-interference-plus-noise ratios (SINRs) for downlink and uplink communication and maximum tolerable SINRs at potential eavesdroppers. The proposed optimization framework enables secure downlink and uplink communication via artificial noise generation in the downlink for interfering the potential eavesdroppers. We minimize the weighted sum of the total downlink and uplink transmit power by jointly optimizing the downlink beamformer, the artificial noise covariance matrix, and the uplink transmit power. We adopt a semidefinite programming (SDP) relaxation approach to obtain a tractable solution for the considered problem. The tightness of the SDP relaxation is revealed by examining a sufficient condition for the global optimality of the solution. Simulation results demonstrate the excellent performance achieved by the proposed scheme and the significant transmit power savings enabled optimization of the artificial noise covariance matrix.Comment: 6 pages, invited paper, IEEE Conference on Communications and Network Security (CNS) 2015 in Florence, Italy, on September 30, 201
    • …
    corecore