132 research outputs found

    Prognostics and Health Management of Industrial Equipment

    No full text
    ISBN13: 9781466620957Prognostics and health management (PHM) is a field of research and application which aims at making use of past, present and future information on the environmental, operational and usage conditions of an equipment in order to detect its degradation, diagnose its faults, predict and proactively manage its failures. The present paper reviews the state of knowledge on the methods for PHM, placing these in context with the different information and data which may be available for performing the task and identifying the current challenges and open issues which must be addressed for achieving reliable deployment in practice. The focus is predominantly on the prognostic part of PHM, which addresses the prediction of equipment failure occurrence and associated residual useful life (RUL)

    Condition-based maintenance—an extensive literature review

    Get PDF
    This paper presents an extensive literature review on the field of condition-based maintenance (CBM). The paper encompasses over 4000 contributions, analysed through bibliometric indicators and meta-analysis techniques. The review adopts Factor Analysis as a dimensionality reduction, concerning the metric of the co-citations of the papers. Four main research areas have been identified, able to delineate the research field synthetically, from theoretical foundations of CBM; (i) towards more specific implementation strategies (ii) and then specifically focusing on operational aspects related to (iii) inspection and replacement and (iv) prognosis. The data-driven bibliometric results have been combined with an interpretative research to extract both core and detailed concepts related to CBM. This combined analysis allows a critical reflection on the field and the extraction of potential future research directions

    A metric for assessing and optimizing data-driven prognostic algorithms for predictive maintenance

    Full text link
    Prognostic Health Management aims to predict the Remaining Useful Life (RUL) of degrading components/systems utilizing monitoring data. These RUL predictions form the basis for optimizing maintenance planning in a Predictive Maintenance (PdM) paradigm. We here propose a metric for assessing data-driven prognostic algorithms based on their impact on downstream PdM decisions. The metric is defined in association with a decision setting and a corresponding PdM policy. We consider two typical PdM decision settings, namely component ordering and/or replacement planning, for which we investigate and improve PdM policies that are commonly utilized in the literature. All policies are evaluated via the data-driven estimation of the long-run expected maintenance cost per unit time, relying on available monitoring data from run-to-failure experiments. The policy evaluation enables the estimation of the proposed metric. The latter can further serve as an objective function for optimizing heuristic PdM policies or algorithms' hyperparameters. The effect of different PdM policies on the metric is initially investigated through a theoretical numerical example. Subsequently, we employ four data-driven prognostic algorithms on a simulated turbofan engine degradation problem, and investigate the joint effect of prognostic algorithm and PdM policy on the metric, resulting in a decision-oriented performance assessment of these algorithms

    Particle filter-based damage prognosis using online feature fusion and selection

    Get PDF
    Damage prognosis generally resorts to damage quantification functions and evolution models to quantify the current damage state and to predict the future states and the remaining useful life (RUL). The former typically consists of a function describing the relationship between the damage state and a statistical feature extracted from the measured signals, thus the prognostic performance will strongly depend on the selection of a proper feature. Given the best feature may vary for different specimens or even at each time instant for the same specimen during damage progression, such selection is a challenging task but has received little investigation so far. In this context, this paper proposes a particle filter-based damage prognosis framework, which involves an online feature fusion and selection scheme. A prognostic model is considered for each feature, with a multivariate process equation, formulated using both a damage degradation function and a bias parameter, and a measurement equation linking the damage state and that feature considering a data-driven model and the bias. One PF is used to estimate the damage state, its evolution parameters, and the bias for each model. Then, at each step, the feature with the smallest estimated bias is selected as the best feature providing the most likely state vectors and is used to select the most likely samples of the damage state and growth parameters for predicting the RUL and for calculating the prior at the next step. The proposed prognostic framework is demonstrated by an experimental study, where an aluminum lug structure subject to fatigue crack growth is monitored by a Lamb wave measurement system

    Review of Health Prognostics and Condition Monitoring of Electronic Components

    Get PDF
    To meet the specifications of low cost, highly reliable electronic devices, fault diagnosis techniques play an essential role. It is vital to find flaws at an early stage in design, components, material, or manufacturing during the initial phase. This review paper attempts to summarize past development and recent advances in the areas about green manufacturing, maintenance, remaining useful life (RUL) prediction, and like. The current state of the art in reliability research for electronic components, mainly includes failure mechanisms, condition monitoring, and residual lifetime evaluation is explored. A critical analysis of reliability studies to identify their relative merits and usefulness of the outcome of these studies' vis-a-vis green manufacturing is presented. The wide array of statistical, empirical, and intelligent tools and techniques used in the literature are then identified and mapped. Finally, the findings are summarized, and the central research gap is highlighted
    • …
    corecore