664 research outputs found

    A Survey on UAV-enabled Edge Computing: Resource Management Perspective

    Full text link
    Edge computing facilitates low-latency services at the network's edge by distributing computation, communication, and storage resources within the geographic proximity of mobile and Internet-of-Things (IoT) devices. The recent advancement in Unmanned Aerial Vehicles (UAVs) technologies has opened new opportunities for edge computing in military operations, disaster response, or remote areas where traditional terrestrial networks are limited or unavailable. In such environments, UAVs can be deployed as aerial edge servers or relays to facilitate edge computing services. This form of computing is also known as UAV-enabled Edge Computing (UEC), which offers several unique benefits such as mobility, line-of-sight, flexibility, computational capability, and cost-efficiency. However, the resources on UAVs, edge servers, and IoT devices are typically very limited in the context of UEC. Efficient resource management is, therefore, a critical research challenge in UEC. In this article, we present a survey on the existing research in UEC from the resource management perspective. We identify a conceptual architecture, different types of collaborations, wireless communication models, research directions, key techniques and performance indicators for resource management in UEC. We also present a taxonomy of resource management in UEC. Finally, we identify and discuss some open research challenges that can stimulate future research directions for resource management in UEC.Comment: 36 pages, Accepted to ACM CSU

    Joint Trajectory-Task-Cache Optimization in UAV-Enabled Mobile Edge Networks for Cyber-Physical System

    Get PDF
    This paper studies an unmanned aerial vehicle (UAV)-enabled mobile edge network for Cyber-Physical System (CPS), where UAV with fixed-wing or rotary-wing is dispatched to provide communication and mobile edge computing (MEC) services to ground terminals (GTs). To minimize the energy consumption so as to extend the endurance of the UAV, we intend to jointly optimize its 3D trajectory and the task-cache strategies among GTs to save the energies spent on flight propulsion and GT tasks. Such joint trajectory-task-cache problem is difficult to be optimally solved, as it is non-convex and involves multiple constraints. To tackle this problem, we reformulate the optimizing of task offloading and cache into two tractable linear program (LP) problems, and the optimizing of UAV trajectory into three convex Quadratically Constrained Quadratically Program (QCQP) problems on horizontal trajectory, vertical trajectory and flight time of the UAV respectively. Then a block coordinate descent algorithm is proposed to iteratively solve the formed sub-problems through a successive convex optimization (SCO) process. A high-quality sub-optimal solution to the joint problem then will be obtained, after the algorithm converging to a prescribed accuracy. The numerical results show the proposed solution significantly outperforms the baseline solution

    Artificial Intelligence Driven UAV-NOMA-MEC in Next Generation Wireless Networks

    Full text link
    Driven by the unprecedented high throughput and low latency requirements in next-generation wireless networks, this paper introduces an artificial intelligence (AI) enabled framework in which unmanned aerial vehicles (UAVs) use non-orthogonal multiple access (NOMA) and mobile edge computing (MEC) techniques to service terrestrial mobile users (MUs). The proposed framework enables the terrestrial MUs to offload their computational tasks simultaneously, intelligently, and flexibly, thus enhancing their connectivity as well as reducing their transmission latency and their energy consumption. To this end, the fundamentals of this framework are first introduced. Then, a number of communication and AI techniques are proposed to improve the quality of experiences of terrestrial MUs. To this end, federated learning and reinforcement learning are introduced for intelligent task offloading and computing resource allocation. For each learning technique, motivations, challenges, and representative results are introduced. Finally, several key technical challenges and open research issues of the proposed framework are summarized.Comment: 14 pages, 5 figure

    A survey on intelligent computation offloading and pricing strategy in UAV-Enabled MEC network: Challenges and research directions

    Get PDF
    The lack of resource constraints for edge servers makes it difficult to simultaneously perform a large number of Mobile Devices’ (MDs) requests. The Mobile Network Operator (MNO) must then select how to delegate MD queries to its Mobile Edge Computing (MEC) server in order to maximize the overall benefit of admitted requests with varying latency needs. Unmanned Aerial Vehicles (UAVs) and Artificial Intelligent (AI) can increase MNO performance because of their flexibility in deployment, high mobility of UAV, and efficiency of AI algorithms. There is a trade-off between the cost incurred by the MD and the profit received by the MNO. Intelligent computing offloading to UAV-enabled MEC, on the other hand, is a promising way to bridge the gap between MDs' limited processing resources, as well as the intelligent algorithms that are utilized for computation offloading in the UAV-MEC network and the high computing demands of upcoming applications. This study looks at some of the research on the benefits of computation offloading process in the UAV-MEC network, as well as the intelligent models that are utilized for computation offloading in the UAV-MEC network. In addition, this article examines several intelligent pricing techniques in different structures in the UAV-MEC network. Finally, this work highlights some important open research issues and future research directions of Artificial Intelligent (AI) in computation offloading and applying intelligent pricing strategies in the UAV-MEC network

    Mobile Edge Computing via a UAV-Mounted Cloudlet: Optimization of Bit Allocation and Path Planning

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have been recently considered as means to provide enhanced coverage or relaying services to mobile users (MUs) in wireless systems with limited or no infrastructure. In this paper, a UAV-based mobile cloud computing system is studied in which a moving UAV is endowed with computing capabilities to offer computation offloading opportunities to MUs with limited local processing capabilities. The system aims at minimizing the total mobile energy consumption while satisfying quality of service requirements of the offloaded mobile application. Offloading is enabled by uplink and downlink communications between the mobile devices and the UAV that take place by means of frequency division duplex (FDD) via orthogonal or non-orthogonal multiple access (NOMA) schemes. The problem of jointly optimizing the bit allocation for uplink and downlink communication as well as for computing at the UAV, along with the cloudlet's trajectory under latency and UAV's energy budget constraints is formulated and addressed by leveraging successive convex approximation (SCA) strategies. Numerical results demonstrate the significant energy savings that can be accrued by means of the proposed joint optimization of bit allocation and cloudlet's trajectory as compared to local mobile execution as well as to partial optimization approaches that design only the bit allocation or the cloudlet's trajectory.Comment: 14 pages, 5 figures, 2 tables, IEEE Transactions on Vehicular Technolog

    Mobile edge computing in wireless communication networks: design and optimization

    Get PDF
    This dissertation studies the design and optimization of applying mobile edge computing (MEC) in three kinds of advanced wireless networks, which is motivated by three non-trivial but not thoroughly studied topics in the existing MEC-related literature. First, we study the application of MEC in wireless powered cooperation-assisted systems. The technology of wireless power transfer (WPT) used at the access point (AP) is capable of providing sustainable energy supply for resource-limited user equipment (UEs) to support computation offloading, but also introduces the double-near-far effect into wireless powered communication networks (WPCNs). By leveraging cooperation among near-far users, the system performance can be highly improved through effectively suppressing the double-near-far effect in WPCNs. Then, we consider the application of MEC in the unmanned aerial vehicle (UAV)-assisted relaying systems to make better use of the flexible features of UAV as well as its computing resources. The adopted UAV not only acts as an MEC server to help compute UEs' offloaded tasks but also a relay to forward UEs' offloaded tasks to the AP, thus such kind of cooperation between the UAV and the AP can take the advantages of both sides so as to improve the system performance. Last, heterogeneous cellular networks (HetNets) with the coexistence of MEC and central cloud computing (CCC) are studied to show the complementary and promotional effects between MEC and CCC. The small base stations (SBSs) empowered by edge clouds offer limited edge computing services for UEs, whereas the macro base station (MBS) provides high-performance CCC services for UEs via restricted multiple-input multiple-output (MIMO) backhauls to their associated SBSs. With further considering the case with massive MIMO backhauls, the system performance can be further improved while significantly reducing the computational complexity. In the aforementioned three advanced MEC systems, we mainly focus on minimizing the energy consumption of the systems subject to proper latency constraints, due to the fact that energy consumption and latency are regarded as two important metrics for measuring the performance of MEC-related works. Effective optimization algorithms are proposed to solve the corresponding energy minimization problems, which are further validated by numerical results

    UAV-Assisted Wireless Powered Cooperative Mobile Edge Computing:Joint Offloading, CPU Control, and Trajectory Optimization

    Get PDF
    This article investigates the unmanned-aerial-vehicle (UAV)-enabled wireless powered cooperative mobile edge computing (MEC) system, where a UAV installed with an energy transmitter (ET) and an MEC server provides both energy and computing services to sensor devices (SDs). The active SDs desire to complete their computing tasks with the assistance of the UAV and their neighboring idle SDs that have no computing task. An optimization problem is formulated to minimize the total required energy of UAV by jointly optimizing the CPU frequencies, the offloading amount, the transmit power, and the UAV’s trajectory. To tackle the nonconvex problem, a successive convex approximation (SCA)-based algorithm is designed. Since it may be with relatively high computational complexity, as an alternative, a decomposition and iteration (DAI)-based algorithm is also proposed. The simulation results show that both proposed algorithms converge within several iterations, and the DAI-based algorithm achieve the similar minimal required energy and optimized trajectory with the SCA-based one. Moreover, for a relatively large amount of data, the SCA-based algorithm should be adopted to find an optimal solution, while for a relatively small amount of data, the DAI-based algorithm is a better choice to achieve smaller computing energy consumption. It also shows that the trajectory optimization plays a dominant factor in minimizing the total required energy of the system and optimizing acceleration has a great effect on the required energy of the UAV. Additionally, by jointly optimizing the UAV’s CPU frequencies and the amount of bits offloaded to UAV, the minimal required energy for computing can be greatly reduced compared to other schemes and by leveraging the computing resources of idle SDs, the UAV’s computing energy can also be greatly reduced
    • …
    corecore