5,734 research outputs found

    Bayesian nonparametric models for spatially indexed data of mixed type

    Get PDF
    We develop Bayesian nonparametric models for spatially indexed data of mixed type. Our work is motivated by challenges that occur in environmental epidemiology, where the usual presence of several confounding variables that exhibit complex interactions and high correlations makes it difficult to estimate and understand the effects of risk factors on health outcomes of interest. The modeling approach we adopt assumes that responses and confounding variables are manifestations of continuous latent variables, and uses multivariate Gaussians to jointly model these. Responses and confounding variables are not treated equally as relevant parameters of the distributions of the responses only are modeled in terms of explanatory variables or risk factors. Spatial dependence is introduced by allowing the weights of the nonparametric process priors to be location specific, obtained as probit transformations of Gaussian Markov random fields. Confounding variables and spatial configuration have a similar role in the model, in that they only influence, along with the responses, the allocation probabilities of the areas into the mixture components, thereby allowing for flexible adjustment of the effects of observed confounders, while allowing for the possibility of residual spatial structure, possibly occurring due to unmeasured or undiscovered spatially varying factors. Aspects of the model are illustrated in simulation studies and an application to a real data set

    On Partial Identification of the Pure Direct Effect

    Get PDF
    In causal mediation analysis, nonparametric identification of the pure (natural) direct effect typically relies on, in addition to no unobserved pre-exposure confounding, fundamental assumptions of (i) so-called "cross-world-counterfactuals" independence and (ii) no exposure- induced confounding. When the mediator is binary, bounds for partial identification have been given when neither assumption is made, or alternatively when assuming only (ii). We extend existing bounds to the case of a polytomous mediator, and provide bounds for the case assuming only (i). We apply these bounds to data from the Harvard PEPFAR program in Nigeria, where we evaluate the extent to which the effects of antiretroviral therapy on virological failure are mediated by a patient's adherence, and show that inference on this effect is somewhat sensitive to model assumptions.Comment: 24 pages, 4 figure
    • …
    corecore