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On Partial Identification of the Pure Direct Effect

Caleb Miles, Phyllis Kanki, Seema Meloni, and Eric Tchetgen Tchetgen∗

Abstract

In causal mediation analysis, nonparametric identification of the pure (natural) direct effect
typically relies on, in addition to no unobserved pre-exposure confounding, fundamental as-
sumptions of (i) so-called “cross-world-counterfactuals" independence and (ii) no exposure-
induced confounding. When the mediator is binary, bounds for partial identification have
been given when neither assumption is made, or alternatively when assuming only (ii). We
extend existing bounds to the case of a polytomous mediator, and provide bounds for the
case assuming only (i). We apply these bounds to data from the Harvard PEPFAR program
in Nigeria, where we evaluate the extent to which the effects of antiretroviral therapy on vi-
rological failure are mediated by a patient’s adherence, and show that inference on this effect
is somewhat sensitive to model assumptions.

Keywords: Cross-world counterfactual, Mediation, Natural direct effect, Partial identification,
Pure direct effect, Single World Intervention Graph
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1. INTRODUCTION

Causal mediation analysis seeks to determine the role that an intermediate variable plays in trans-

mitting the effect from an exposure to an outcome. An indirect effect refers to the effect that goes

through the intermediate variable in mediation analysis; a direct effect is a measure of the effect

that does not. The study of causal mediation has in recent years enjoyed an explosion in popular-

ity (Robins and Greenland, 1992; Robins, 1999, 2003; Pearl, 2001; Avin et al., 2005; Taylor et al.,

2005; Petersen et al., 2006; Ten Have et al., 2007; Albert, 2008; Goetgeluk et al., 2008; van der

Laan and Petersen, 2008; VanderWeele, 2009; VanderWeele and Vansteelandt, 2009, 2010; Imai

et al., 2010a,b; Albert and Nelson, 2011; Tchetgen Tchetgen, 2011; VanderWeele, 2011; Albert,

2012; Tchetgen Tchetgen and Shpitser, 2012; Wang and Albert, 2012; Shpitser, 2013; Tchet-

gen Tchetgen, 2013; Tchetgen Tchetgen and Shpitser, 2014; Wang et al., 2013; Albert and Wang,

2015; Hsu et al., 2015), not only in terms of theoretical developments, but also in practice, most

notably in the fields of epidemiology and social sciences. This strand of work is based on ideas

originating from Robins and Greenland (1992) and Pearl (2001) grounded in the language of

potential outcomes (Splawa-Neyman et al., 1990; Rubin, 1974, 1978) to give nonparametric def-

initions of effects involved in mediation analysis, allowing for settings where interactions and

nonlinearities may be present.

Consider an intervention which sets the exposure of interest for all persons in the population

to one of two possible values, a reference value or an active value. The total effect of such

an intervention corresponds to the change of the counterfactual outcome mean if the exposure

were set to the active value compared with if it were set to the reference value. Robins and

Greenland (1992) formalized the concept of effect decomposition of the total effect into direct and

indirect effects by defining pure direct and indirect effects. Pearl (2001) relabeled these effects

as natural direct and indirect effects. The pure direct effect (PDE) corresponds to the change in

the counterfactual outcome mean under an intervention which changes a person’s exposure status

from the reference value to the active value, while maintaining the person’s mediator to the value

it would have had under the exposure reference value. In contrast, the natural indirect effect (NIE)

corresponds to the change in the average counterfactual outcome under an intervention that sets

a person’s exposure value to the active value, while changing the value of the mediator from the
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value it would have had under the reference exposure value, to its value under the active exposure

value. The PDE and NIE sum to give the total effect.

Identification of these natural effects has been somewhat controversial as it requires as-

sumptions that may be overly restrictive for many applications in the health sciences. First,

identification invokes a so-called cross-world-counterfactuals-independence assumption, which

by virtue of involving counterfactuals under conflicting interventions on the exposure, can neither

be enforced experimentally nor tested empirically (Pearl, 2001; Robins and Richardson, 2010).

Secondly, a necessary assumption for identification rules out the presence of exposure-induced

confounding of the mediator’s effect on the outcome, even if all confounders are observed. While

this assumption is in principle testable provided no unmeasured confounding, more often than

not, post-exposure covariates are altogether ignored in routine application, in which case medi-

ation analyses may be invalid. These issues have recently been considered, and some work has

been done on partial or point identification under a weaker assumption. Specifically, on the one

hand Robins and Richardson (2010) and Tchetgen Tchetgen and VanderWeele (2014) provide

conditions for point identification of the pure direct effect when a confounder is directly affected

by the exposure. On the other hand, Robins and Richardson (2010) give bounds for the pure

direct effect for binary mediator without making the cross-world-counterfactual-independence

assumption, but assuming no exposure-induced confounding of the mediator-outcome relation,

and Tchetgen Tchetgen and Phiri (2014) extend these bounds to account for exposure-induced

confounding. Bounds are commonly employed in causal inference when structural assumptions

are not sufficiently strong to give point identification of a causal parameter of interest (Robins,

1989; Balke and Pearl, 1997; Zhang and Rubin, 2003; Kaufman et al., 2005; Cheng and Small,

2006; Cai et al., 2008; Sjölander, 2009; Taguri and Chiba, 2015). We build on this previous work

to provide a number of new nonparametric bounds for the pure direct effect allowing for a poly-

tomous mediator when either (i) exposure-induced confounding is present, or (ii) one does not

assume that cross-world counterfactuals of the mediating and outcome variables are independent,

or (iii) both (i) and (ii) hold.

We apply these bounds to data from the Harvard PEPFAR program in Nigeria, where we

evaluate the extent to which the effects of antiretroviral therapy on virological failure are me-

diated by a patient’s adherence. We show that PEPFAR results are sensitive to the choice of

3
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A M Y A ã M(ã) m̃ Y (ã, m̃)

Figure 1: (a) The three-node mediation directed acyclic graph in a setting with no confound-
ing. The nodes represent random variables, and the arrows represent possible causal effects of
one random variable on another. (b) The single-world intervention graph in the setting of (a)
under the intervention setting A to ã and M to m̃. The black nodes represent random variables
under this intervention, the red nodes represent the level an intervened random variable takes
under this intervention, and the arrows represent possible causal effects of one variable under this
intervention on another.

assumptions made, consequently, we counsel investigators employing these effects to exercise

caution in considering the basis for point identification and to explicitly state the assumptions

required for them to be valid. Where assumptions are empirically untestable, they should be ar-

gued for on the basis of scientific understanding, and ideally the alternative should be explored

by employing partial identification bounds given both here and elsewhere. While some work

has been done to develop sensitivity analyses for unmeasured confounding of the mediator (Tch-

etgen Tchetgen, 2011; Tchetgen Tchetgen and Shpitser, 2012; Vansteelandt and VanderWeele,

2012), sensitivity analyses for ranges of plausible associations between cross-world counterfac-

tuals remain undeveloped. Further development of sensitivity analyses of both forms would be

highly beneficial for practical use, and is fertile ground for future work. We hope that the work

presented here will inspire deeper consideration and transparency regarding underlying identify-

ing assumptions in the practice of mediation analysis.

2. PRELIMINARIES

By way of introduction, the directed acyclic graph (DAG) displayed in Fig. 1.(a) illustrates the

simplest possible mediation setting, where A is defined to be the exposure taking either baseline

value a∗ or comparison value a, M is defined to be the (potential) mediator, and Y is defined

to be the outcome. This DAG assumes randomization of the exposure, which for expositional
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simplicity we maintain throughout. The graph also encodes no unobserved confounding of the

effect of M on Y given A. The effect along the path A→ Y on the diagram is generally referred

to as direct with respect to M , and the effect along the path A → M → Y on the diagram is

generally referred to as indirect with respect to M .

Further elaboration of the specific type of direct and indirect effect under consideration

necessitates counterfactual definitions. Let Y (a) denote a subject’s outcome if treatment A were

set, possibly contrary to fact, to a. In the context of mediation, there will also be potential

outcomes for the intermediate variable. CounterfactualsM(a) and Y (m, a) are defined similarly.

In order to link these with the observed data, we adopt the standard set of consistency assumptions

that

if A = a, then M(a) = M with probability one,

if A = a and M = m, then Y (m, a) = Y with probability one, and

if A = a, then Y (a) = Y with probability one.

In terms of counterfactuals, the randomization assumption encoded by the DAG in Fig. 1.(a) is

{Y (a,m),M(a)}⊥⊥A for all a andm; the assumption of no unobserved confounding ofM given

A is Y (a,m)⊥⊥M(a) | A = a for all a andm. Finally, we will consider as well defined the nested

counterfactual Y {a,M(a∗)}, i.e., the counterfactual outcome under an intervention which sets

the exposure to the comparison value a, and the mediator to the value it would have taken under

the conflicting baseline exposure value a∗.

We may now define the pure/natural direct effect and natural indirect effect (Robins and

Greenland, 1992; Pearl, 2001), which form the following decomposition of the average causal

effect:

E {Y (a)} − E {Y (a∗)}

=

total effect︷ ︸︸ ︷
E [Y {a,M(a)}]− E [Y {a∗,M(a∗)}]

=

natural indirect effect︷ ︸︸ ︷
E [Y {a,M(a)}]− E [Y {a,M(a∗)}] +

pure direct effect︷ ︸︸ ︷
E [Y {a,M(a∗)}]− E [Y {a∗,M(a∗)}).

5
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The terms E{Y (a)} = E [Y {a,M(a)}], for all a, are identified under randomization of A. The

parameter γ0 ≡ E[Y {a,M(a∗)}] would be identified if one were to interpret the DAG in Fig. 1.(a)

as a nonparametric structural equation model with independent errors (NPSEM-IE). Structural

equations provide a nonparametric algebraic interpretation of this DAG corresponding to three

equations, one for each variable in the graph. Each random variable on the graph is associated

with a distinct, arbitrary function, denoted g, and a distinct random disturbance, denoted ε, each

with a subscript corresponding to its respective random variable. Each variable is generated by its

corresponding function, which depends only on all variables that affect it directly (i.e., its parents

on the graph), and its corresponding random disturbance, as follows:

A = gA(εA)

M = gM(A, εM)

Y = gY (A,M, εY ).

Under particular interventions, these structural equations naturally encode dependencies of coun-

terfactuals. Consider, for example, two interventions, one setting A = a∗, and another setting

A = a and M = m. The structural equations then become

A = a∗

M(a∗) = gM(a∗, εM)

Y (a∗) = gY (a∗,M(a∗), εY )

A = a

M(a) = m

Y (a,m) = gY (a,m, εY ).

This formulation places no a priori restriction on the distribution of counterfactuals. The

key assumption of the NPSEM-IE is that the random disturbances are mutually independent. This

allows us to make independence statements regarding counterfactuals under various, possibly-

conflicting interventions. In particular, this model implies that for allm, (i) {M(a), Y (a,m)}⊥⊥A,

(ii) Y (a,m)⊥⊥M(a) | A = a, and (iii) Y (a,m)⊥⊥M(a∗) | A = a, which in turn suffice for iden-

tification of γ0 (Pearl, 2001). Independence statements such as (iii) are known as cross-world

counterfactual statements if a is not equal to a∗, due to their comparison of interventions that

could never occur in the same world simultaneously. Independence condition (iii) can be seen

to hold under the model by considering the NPSEM-IE under a specific intervention and noting
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that the only source of randomness in Y (a,m) = gY (a,m, εY ) is εY and the only source of

randomness in M(a∗) = gM(a∗, εM) is εM . Thus, the cross-world-counterfactual-independence

statement follows directly from independence of exogenous disturbances. However, such an in-

dependence is neither experimentally verifiable nor enforceable (Robins and Richardson, 2010).

This issue has been discussed extensively (Robins and Richardson, 2010; Richardson and

Robins, 2013), and in large part motivated the development of the single-world intervention

graphs (SWIGs) of Richardson and Robins (2013). These causal graphs manage to elucidate this

issue by graphically representing the counterfactuals themselves, allowing independence state-

ments of counterfactuals to be read directly from the graph. Consider the SWIG in Fig. 1.(b). By

d-separation, it is clear that (i) Y (a,m)⊥⊥M(a) for all a and m, however no such statement can

be made from the graph about Y (a,m) andM(a∗) when a 6= a∗. Under this SWIG, independence

between Y (a,m) and M(a∗) is not assumed, and hence γ0 is not point identified. Robins and

Richardson (2010) provide the following bounds for its partial identification in the setting where

M is binary and SWIG independence assumptions M(a)⊥⊥A and Y (a,m)⊥⊥{M(a), A} hold for

all a and m:

max{0, pr(M = 0 | A = a∗) + E(Y |M = 0, A = a)− 1}

+ max{0, pr(M = 1 | A = a∗) + E(Y |M = 1, A = a)− 1}

≤ γ0 ≤

min{pr(M = 0 | A = a∗), E(Y |M = 0, A = a)}

+ min{pr(M = 1 | A = a∗), E(Y |M = 1, A = a)}.

In Section 2, we extend this result to the setting of a polytomous M .

As previously mentioned, another often-overlooked condition required for identification of

γ0 is that there is no confounder of the mediator’s effect on the outcome that is affected by

the exposure. Such a confounder is present in the setting illustrated in the DAG in Fig. 2.(a).

Generally, even under an NPSEM-IE interpretation of this DAG, γ0 will not be identified in this

setting. This is readily seen by considering the following representation under this model given

7
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A R M Y A ã R(ã) M(ã) m̃ Y (ã, m̃)

Figure 2: (a) A mediation directed acyclic graph in which R is an exposure-induced confounder.
The nodes represent random variables, and the arrows represent possible causal effects of one
random variable on another. (b) The single-world intervention graph in the setting of (a) that
has been intervened on to set A to ã ∈ {a, a∗} and M to m̃. The black nodes represent random
variables under this intervention, the red nodes represent the level an intervened random variable
takes under this intervention, and the arrows represent possible causal effects of one variable
under this intervention on another.

by Robins and Richardson (2010):

γ0 =
∑
r,r∗

E {E(Y |M,R = r, A = a) | R = r∗, A = a∗} pr {R(a) = r, R(a∗) = r∗} . (1)

Clearly the joint probability term can never be identified from observed data, since we will never

be able to observe R(a) and R(a∗) for the same individual.

A few conditions for identification have been proposed. Robins and Richardson (2010) give

two. The first is that R(a)⊥⊥R(a∗), in which case the troublesome term in (1) will factor, giving

γ0 =
∑
r∗,r

E {E(Y |M,R = r, A = a) | R = r∗, A = a∗} pr(R = r∗ | A = a∗)

× pr(R = r | A = a).

It seems biologically unlikely, however, that in a scenario in whichA affectsR, the counterfactual

R under A = a would not be predictive of the counterfactual R under A = a∗. The other

condition is that the counterfactual outcome under one exposure value is a deterministic function
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of the counterfactual for the other treatment, i.e., R(a) = g{R(a∗)}. In this case,

γ0 =
∑
r∗,r

E {E(Y |M,R = r, A = a) | R = r∗, A = a∗} pr(R = r∗ | A = a∗)I{r = g(r∗)}.

The above assumption is implied by rank preservation (Robins and Richardson, 2010), which is

unlikely to hold in social and health sciences as it rules out individual-level effect heterogeneity

(Tchetgen Tchetgen and VanderWeele, 2014). As none of these conditions are experimentally

verifiable, the authors themselves “do not advocate blithely adopting such assumptions in order

to preserve identification of the PDE in [this setting]" (Robins and Richardson, 2010).

Tchetgen Tchetgen and VanderWeele (2014) give two testable conditions for identification

of γ0 whenR is present. The first is ofA–R monotonicity, i.e., for BernoulliR,R(a) ≥ R(a∗). If

R is a vector of Bernoulli random variables whose structural equations have independent errors,

and if monotonicity holds for each element,

γ0 =
∑
r,r∗

E {E(Y |M,R = r, A = a) | R = r∗, A = a∗}
k∏
j=1

fj(rj, r
∗
j , a, a

∗)

where

fj(rj, r
∗
j , a, a

∗) =



pr(Rj = 1 | A = a∗) if r∗j = rj = 1,

pr(Rj = 1 | A = a)− pr(Rj = 1 | A = a∗) if r∗j = 0 and rj = 1,

0 if r∗j = 1 and rj = 0,

pr(Rj = 0 | A = a) if r∗j = rj = 0.

Their second condition is no M–R additive mean interaction, i.e.,

E(Y | m, r, a)− E(Y | m∗, r, a)− E(Y | m, r∗, a) + E(Y | m∗, r∗, a) = 0,

9
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for all levels m and m∗ of M and r and r∗ of R. For discrete M and R, this yields

γ0 =
∑
m

{E(Y | m, r∗, a)− E(Y | m∗, r∗, a)} pr(M = m | A = a∗)

+
∑
r

{E(Y | m∗, r, a)− E(Y | m∗, r∗, a)} pr(R = r | A = a)

+ E(Y | m∗, r∗, a).

Eschewing the cross-world-counterfactual assumptions of the NPSEM-IE , Tchetgen Tch-

etgen and Phiri (2014) extend the bounds of Robins and Richardson (2010) to allow for the

presence of an exposure-induced confounder when the mediator is binary:

max

{
0, pr(M = 0 | A = a∗) +

∑
r

E(Y |M = 0, R = r, A = a)pr(R = r | A = a)− 1

}

+ max

{
0, pr(M = 1 | A = a∗) +

∑
r

E(Y |M = 1, R = r, A = a)pr(R = r | A = a)− 1

}
≤ γ0 ≤

min

{
pr(M = 0 | A = a∗),

∑
r

E(Y |M = 0, R = r, A = a)pr(R = r | A = a)

}

+ min

{
pr(M = 1 | A = a∗),

∑
r

E(Y |M = 1, R = r, A = a)pr(R = r | A = a)

}
.

We extend these bounds as well to allow for polytomous M in Section 3. Additionally, we con-

struct bounds for γ0 under an NPSEM-IE that account for a discrete exposure-induced confounder,

but require no further assumption.

3. NEW PARTIAL IDENTIFICATION RESULTS

We begin by extending the bounds of Robins and Richardson (2010) and Tchetgen Tchetgen

and Phiri (2014) to settings with discrete mediator and outcome. Proofs can be found in the

Appendix.

Theorem 1. Under the SWIG in either Fig. 1.(b) or Fig. 2.(b) with discrete M and Y and
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arbitrary R,

∑
m,y

y (max [0, pr{M(a∗) = m}+ pr{Y (a,m) = y} − 1] I(y > 0)

+ min [pr{M(a∗) = m}, pr{Y (a,m) = y}] I(y < 0))

≤ γ0 ≤∑
m,y

y (max [0, pr{M(a∗) = m}+ pr{Y (a,m) = y} − 1] I(y < 0)

+ min [pr{M(a∗) = m}, pr{Y (a,m) = y}] I(y > 0)) .

The upper and lower bounds coincide when Y (a,m) or M(a∗) is degenerate, which fol-

lows from the properties of joint probability mass functions. The upper bound is achieved only if

Y (a,m) andM(a∗) are comonotone for eachm, i.e., ifFY (a,m),M(a∗)(y,m) = min
[
FY (a,m)(y), FM(a∗)(m)

]
for each m, where FX(·) denotes the joint (or marginal) cumulative distribution function of the

random vector (or scalar) X . The lower bound is achieved only if they are countermonotone

for each m, i.e., if FY (a,m),M(a∗)(y,m) = max
{

0, FY (a,m)(y) + FM(a∗)(m)− 1
}

for each m. A

straightforward application of the g-formula under the DAGs in Fig. 1 and 2 yields the following

corollaries:

Corollary 1. For polytomous M and Y , γ0 is partially identified under the SWIG in Fig. 1.(b)

by the bounds in Theorem 1 with pr{M(a∗) = m} = pr(M = m | a∗) and pr{Y (a,m) =

y} = pr(Y = y | m, a). It is partially identified under the SWIG in Fig. 2.(b) by the same

bounds, but with pr{M(a∗) = m} = pr(M = m | a∗) and pr{Y (a,m) = y} =
∑

r pr(Y = y |

m, r, a)pr(R = r | a).

The second part of the corollary continues to hold even if there were a hidden common cause

of R and Y as in Fig. 3, since the same g-formula applies in this setting. Whereas the previous

results invoked no cross-world-counterfactual independences under the SWIG interpretation of

the DAG in Fig. 2.(a), sharper bounds are available under Pearl’s NPSEM-IE interpretation of

these DAGs, as derived in the following result.

11
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A R M Y

H

A ã R(ã) M(ã) m̃ Y (ã, m̃)

H

Figure 3: (a) A mediation directed acyclic graph in which an unobserved variableH affectsR, an
exposure-induced confounder, and Y . The black nodes represent observed random variables, and
the arrows represent possible causal effects of one random variable on another. (b) The single-
world intervention graph in the setting of (a) that has been intervened on to set A to ã ∈ {a, a∗}
and M to m̃. The black nodes represent random variables under this intervention, the red nodes
represent the level an intervened random variable takes under this intervention, and the arrows
represent possible causal effects of one variable under this intervention on another. In each panel,
the gray node represents a hidden random variable

Theorem 2. For discrete R taking values in {1, . . . , p}, let B be the p2 × (p− 1)2 matrix



Ip−1 0(p−1)×(p−1) · · · 0(p−1)×(p−1) 0(p−1)×(p−1)

−1Tp−1 0Tp−1 · · · 0Tp−1 0Tp−1

0(p−1)×(p−1) Ip−1 · · · 0(p−1)×(p−1) 0(p−1)×(p−1)

0Tp−1 −1Tp−1 · · · 0Tp−1 0Tp−1

...
... . . . ...

...

0(p−1)×(p−1) 0(p−1)×(p−1) · · · Ip−1 0(p−1)×(p−1)

0Tp−1 0Tp−1 · · · −1Tp−1 0Tp−1

0(p−1)×(p−1) 0(p−1)×(p−1) · · · 0(p−1)×(p−1) Ip−1

0Tp−1 0Tp−1 · · · 0Tp−1 −1Tp−1

−Ip−1 −Ip−1 · · · −Ip−1 −Ip−1

1T(p−1)2



,

12
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d be the p2-dimensional vector

0p−1

pr (R = 1 | A = a)

0p−1

pr (R = 2 | A = a)
...

0p−1

pr (R = p− 1 | A = a)

pr (R = 1 | A = a∗)

pr (R = 2 | A = a∗)
...

pr (R = p− 1 | A = a∗)

pr (R = p | A = a) + pr (R = p | A = a∗)− 1



,

and x be the vectorization of the matrix [E {E(Y |M,R = r, A = a) | R = r∗, A = a∗}]r,r∗ .

Under a NPSEM-IE corresponding to the DAG in Fig. 2.(a) where M and Y can be either contin-

uous or discrete, γ0 is partially identified by
[
xT (BδL + d), xT (BδU + d)

]
, where δL and δU are

the minimizing and maximizing solutions respectively to the linear programming problem with

objective function xTBδ subject to the constraints

 I(p−1)2

−I(p−1)2

 δ ≤



min{pr(R = 1 | A = a), pr(R = 1 | A = a∗)}

min{pr(R = 1 | A = a), pr(R = 2 | A = a∗)}
...

min{pr(R = p | A = a), pr(R = p− 1 | A = a∗)}

min{pr(R = p | A = a), pr(R = p | A = a∗)}

min{0, 1− pr(R = 1 | A = a)− pr(R = 1 | A = a∗)}

min{0, 1− pr(R = 1 | A = a)− pr(R = 2 | A = a∗)}
...

min{0, 1− pr(R = p | A = a)− pr(R = p− 1 | A = a∗)}

min{0, 1− pr(R = p | A = a)− pr(R = p | A = a∗)}
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and δ ≥ 0.

Similar to the previous result, these bounds coincide if either R(a) or R(a∗) is degenerate.

The upper bound is achieved when R(a) and R(a∗) are comonotone; the lower bound is achieved

when they are countermonotone. While these bounds are not available in closed form, they can be

readily solved using standard software, such as with the lp_solve function, which uses the revised

simplex method and is accessible from a number of languages, including R, MATLAB, Python,

and C. While the method used by this software is not guaranteed to converge at a polynomial

rate (Klee and Minty, 1970), it is quite efficient in most cases (Schrijver, 1998). The following

corollary shows that these bounds reduce to a closed form when R is binary.

Corollary 2. Under a NPSEM-IE corresponding to the DAG in Fig. 2.(a) with binary R,

min
π11∈Π

∑
r,r∗

E {E(Y |M,R = r, A = a) | R = r∗, A = a∗}h(r, r∗, π11)

≤ γ0 ≤

max
π11∈Π

∑
r,r∗

E {E(Y |M,R = r, A = a) | R = r∗, A = a∗}h(r, r∗, π11)

where Π is the set

{max {0, pr(R = 1 | A = a) + pr(R = 1 | A = a∗)− 1} ,

min {pr(R = 1 | A = a), pr(R = 1 | A = a∗)}}

and

h(r, r∗, π11) =



π11 if r∗ = r = 1,

pr(R = 1 | A = a)− π11 if r∗ = 0 and r = 1,

pr(R = 1 | A = a∗)− π11 if r∗ = 1 and r = 0,

1− pr(R = 1 | A = a)− pr(R = 1 | A = a∗) + π11 if r∗ = r = 0.

UnderA−Rmonotonicity with binaryR, the identifying functional given by Tchetgen Tch-

etgen and VanderWeele (2014) is recovered at the upper bound in Corollary 2. All results given
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here can be extended to settings with observed pre-exposure confounders, which we denote C.

In Corollary 1, one must first perform conditional inference given C, then subsequently average

over the conditional bounds. This is in fact valid due to Jensen’s inequality, because the con-

straints on the marginal joint probabilities are already implied by the constraints enforced on the

conditional joint distributions, so no further constraints need be considered. However, Jensen’s

inequality does not apply in the case of Theorem 2, so controlling for C requires estimating two

pairs of candidate bounds and selecting the larger of the lower bounds and the smaller of the

upper bounds. When p is of moderate size, δ can be solved for each covariate pattern of C, i.e.,

without modeling the dependence of the cross-world-counterfactual joint distribution on C. Av-

eraging the resulting conditional bounds gives the first pair of bounds. The second pair results

from replacing each probability in the theorem with an average over the probabilities conditional

on C and doing the same with x.

4. APPLICATION TO HARVARD PEPFAR DATA SET

We now consider an application to a data set collected by the Harvard President’s Emergency Plan

for AIDS Relief (PEPFAR) program in Nigeria. The data set consists of previously antiretroviral

therapy (ART)-naïve, HIV-1 infected adult patients who began ART in the program and were fol-

lowed at least one year following initiation. Patients without reliable viral load data at two of the

hospitals were excluded. Only complete cases initially prescribed to either TDF+3TC/FTC+NVP

or AZT+3TC+NVP1 were considered for this analysis. Thus, the data set we consider consists of

6627 patients, 1919 of whom were prescribed to TDF+3TC/FTC+NVP, and the remaining 4708

prescribed to AZT+3TC+NVP.

There has accumulated evidence of a differential effect on virologic failure between these

two first-line antiretroviral treatment regimens (Tang et al., 2012). Virologic failure is defined

by the World Health Organization as repeat viral load above 1000 copies/mL. We base this on

measurements at 12 and 18 months of ART duration in our analysis.

A natural question of scientific interest is what role adherence plays in mediating this differ-

ential effect. We are primarily interested in learning about the scientific mechanism of this effect

on the individual level. The natural indirect effect best captures this mechanism in that it captures

13TC=lamivudine, AZT=zidovudine, FTC=emtricitabine, NVP=nevirapine, TDF=tenofovir
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an isolated effect difference mediated by adherence by, in a sense, deactivating effect differences

along all other possible causal pathways. We specifically examine the effect through adherence

over the second six months since treatment assignment, i.e., the six months prior to the first vi-

ral load measurement. Identification is complicated by the presence of treatment toxicity, which

clearly affects adherence directly, and has the potential to modify the effect of the treatment as-

signment on virologic failure. Thus, toxicity measured at six months after treatment assignment

is an exposure-induced confounder of the effect of the mediator on the outcome. Further, toxicity

and virologic failure are likely to be rendered dependent by unobserved underlying biological

common causes as in Fig. 3, where H represents these hidden biological mechanisms. Because

we define the mediator to be adherence over the second six months, adherence over the first six

months is also an exposure-induced confounder along with toxicity, and must be accounted for.

Had we defined the mediator to be adherence over the full year, measurement of the mediator and

toxicity would have overlapped, violating the principle of temporal ordering.

Let C denote the vector consisting of baseline covariates sex, age, marital status, WHO

stage, hepatitis C virus, hepatitis B virus, CD4+ cell count, and viral load. Let A be an indicator

of ART assignment taking levels a∗ for TDF+3TC/FTC+NVP and a for AZT+3TC+NVP; R be

a vector of two indicator variables, one of the presence of any lab toxicity, and one of adherence

exceeding 95%, both over the first six months following initiation of therapy; M be an indicator

of adherence exceeding 95% over the subsequent six months; and Y be an indicator of virologic

failure at one year, i.e., repeat viral load above 1000 copies/mL at one year and at 18 months.

Here we estimate the natural indirect effect of A on Y through M , as defined above, on the

risk difference scale using the various sets of identifying assumptions given above. Throughout,

inference is performed using maximum likelihood for point estimation and a weighted bootstrap

(Rao and Zhao, 1992; van der Vaart and Wellner, 1996) for confidence intervals, which appro-

priately accounts for the rare outcome. The results are summarized in Fig. 4. It is immediately

apparent that inference is sensitive to which identifying assumptions are made. Consider an

investigator who might be willing to rely on cross-world-counterfactual independences. If she

decides to ignore the presence of toxicity, she might likely conclude that there is a very small,

yet significant negative indirect effect. Conversely, were she to make the no M–R interaction

assumption, she would find a significant positive indirect effect with considerable uncertainty.
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Figure 4: A plot showing the estimated natural indirect effect of ART assignment on virologic
failure with respect to adherence under the various assumptions. The assumptions vary across the
horizontal axis, with the first part of the label indicating the assumption regarding the exposure-
induced confounder, R, and the second part indicating the assumption regarding cross-world
counterfactuals. For the assumptions regarding R, “Ignore" means that the presence of R is ig-
nored altogether, “Monoton." means the A–R monotonicity assumption in Section 1, “No M*R"
means the noM–R interaction assumption in Section 1, and “None" means thatR was accounted
for without additional assumptions. For the assumptions regarding cross-world counterfactuals,
“IE" means a NPSEM-IE was assumed, and “None" means no cross-world-counterfactuals inde-
pendences were assumed. When the assumptions give partial identification, the two dots rep-
resent the point estimates of the upper and lower bound for the natural indirect effect, and the
vertical bar represents the bootstrap 95% confidence interval for the interval. When the assump-
tions give full identification, the single dot represents the point estimate of the natural indirect
effect, and the vertical bar represents its bootstrap 95% confidence interval.
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In fact, an empirical test of this assumption reveals that it is unlikely to apply. Likewise, the

data suggest that the required assumption of independent errors of the components of R is also

unlikely to hold. Nonetheless, we present both results for the sake of comparison. Results are

fairly imprecise under monotonicity, and do not show a significant effect.

Another investigator unwilling to impose cross-world-counterfactual-independence assump-

tions is left with little to say as the bounds are wide, and include the null hypothesis of no NIE,

regardless of how toxicity is handled. Interestingly, the bounds that result from making no as-

sumptions about the joint distribution of the cross-world R counterfactuals are narrower than the

bounds that result from ignoring R. That is, the bounds themselves appear narrower; the vari-

ances of the interval estimates appear to be comparable. This is because even though we do not

impose any restrictions on the distribution of R or its counterfactuals a priori, observing R is

clearly informative. The bounds accounting for R have the added advantage of being the only

identifying formula that remains valid when toxicity and virologic suppression are affected by an

unobserved common cause, as in Fig. 3.

Finally, incorporatingR results in narrower interval estimates than not imposing the NPSEM-IE,

even ifR were ignored. Thus, cross-world-counterfactual-independences appear to have stronger

empirical implications in the current analysis than assumptions regarding exposure-induced con-

founders. The general trend in these results is that little is gained in terms of precision by assump-

tions regarding R. In fact, the confidence interval for the bounds resulting from the independent

errors assumption and no assumption regarding R is narrower than the confidence interval for the

estimate that results from assuming monotonicity, despite the fact that the NIE is point-identified

in the latter case. The naïve assumption that R is not a confounder is the only assumption about

R under which precision is gained.

APPENDIX

Proofs of theorems

Proof of Theorem 1. For each level m and y, define π1(m, y) = pr{Y (a,m) = y} and π2(m) =

pr{M(a∗) = m}. There exist U1(m, y), U2(m) ∼ U(0, 1) such that I{Y (a,m) = y} =

I{U1(m, y) ≤ π1(m, y)} and I{M(a∗) = m} = I{U2(m) ≤ π2(m)}. The joint distribution
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FU1(m,y),U2(m), then, is a bivariate copula, for which Fréchet–Hoeffding sharp bounds exist. Ap-

plying these to pr {Y (a,m) = y,M(a∗) = m} = FU1(m,y),U2(m) {π1(m, y), π2(m)}, we have

max [0, pr{M(a∗) = m}+ pr{Y (a,m) = y} − 1]

≤ pr {Y (a,m) = y,M(a∗) = m} ≤

min [pr{M(a∗) = m}, pr{Y (a,m) = y}] .

Applying these bounds to each summand in

E[Y {a,M(a∗)}] =
∑
m,y

ypr{Y (a,m) = y,M(a∗) = m}

yields the result.

Proof of Theorem 2. Let πr,r∗ = pr {R(a) = r, R(a∗) = r∗}, π be the vectorization of the matrix

[πr,r∗ ], and δ be the vectorization of the matrix [πr,r∗ ]−p,−p, i.e., the vectorization of the matrix

π with row p and column p removed. Equation (1) can now be expressed as γ0 = xTπ, which

is identified in x, but not π. Conditional on the marginal probabilities, which are identified, the

joint probabilities have (p− 1)2 degrees of freedom, and can be expressed as π = Bδ + d. Since

xTBδ is linear in δ and each element of δ is constrained by

max {0, pr(R = r | A = a) + pr(R = r∗ | A = a∗)− 1}

≤ πr,r∗ ≤

min {pr(R = r | A = a), pr(R = r∗ | A = a∗)} ,

the proposed linear programming problem will yield the δ that optimizes xTBδ, and hence

xT (Bδ+d). Thus, γ0 will be bounded by xT (Bδ+d) evaluated at the minimizing and maximizing

linear programming solutions δL and δU .
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