7 research outputs found

    Joint morphological-lexical language modeling for processing morphologically rich languages with application to dialectal Arabic

    Get PDF
    Language modeling for an inflected language such as Arabic poses new challenges for speech recognition and machine translation due to its rich morphology. Rich morphology results in large increases in out-of-vocabulary (OOV) rate and poor language model parameter estimation in the absence of large quantities of data. In this study, we present a joint morphological-lexical language model (JMLLM) that takes advantage of Arabic morphology. JMLLM combines morphological segments with the underlying lexical items and additional available information sources with regards to morphological segments and lexical items in a single joint model. Joint representation and modeling of morphological and lexical items reduces the OOV rate and provides smooth probability estimates while keeping the predictive power of whole words. Speech recognition and machine translation experiments in dialectal-Arabic show improvements over word and morpheme based trigram language models. We also show that as the tightness of integration between different information sources increases, both speech recognition and machine translation performances improve

    Conversational Arabic Automatic Speech Recognition

    Get PDF
    Colloquial Arabic (CA) is the set of spoken variants of modern Arabic that exist in the form of regional dialects and are considered generally to be mother-tongues in those regions. CA has limited textual resource because it exists only as a spoken language and without a standardised written form. Normally the modern standard Arabic (MSA) writing convention is employed that has limitations in phonetically representing CA. Without phonetic dictionaries the pronunciation of CA words is ambiguous, and can only be obtained through word and/or sentence context. Moreover, CA inherits the MSA complex word structure where words can be created from attaching affixes to a word. In automatic speech recognition (ASR), commonly used approaches to model acoustic, pronunciation and word variability are language independent. However, one can observe significant differences in performance between English and CA, with the latter yielding up to three times higher error rates. This thesis investigates the main issues for the under-performance of CA ASR systems. The work focuses on two directions: first, the impact of limited lexical coverage, and insufficient training data for written CA on language modelling is investigated; second, obtaining better models for the acoustics and pronunciations by learning to transfer between written and spoken forms. Several original contributions result from each direction. Using data-driven classes from decomposed text are shown to reduce out-of-vocabulary rate. A novel colloquialisation system to import additional data is introduced; automatic diacritisation to restore the missing short vowels was found to yield good performance; and a new acoustic set for describing CA was defined. Using the proposed methods improved the ASR performance in terms of word error rate in a CA conversational telephone speech ASR task

    An Overview on Language Models: Recent Developments and Outlook

    Full text link
    Language modeling studies the probability distributions over strings of texts. It is one of the most fundamental tasks in natural language processing (NLP). It has been widely used in text generation, speech recognition, machine translation, etc. Conventional language models (CLMs) aim to predict the probability of linguistic sequences in a causal manner. In contrast, pre-trained language models (PLMs) cover broader concepts and can be used in both causal sequential modeling and fine-tuning for downstream applications. PLMs have their own training paradigms (usually self-supervised) and serve as foundation models in modern NLP systems. This overview paper provides an introduction to both CLMs and PLMs from five aspects, i.e., linguistic units, structures, training methods, evaluation methods, and applications. Furthermore, we discuss the relationship between CLMs and PLMs and shed light on the future directions of language modeling in the pre-trained era

    Advances in unlimited-vocabulary speech recognition for morphologically rich languages

    Get PDF
    Automatic speech recognition systems are devices or computer programs that convert human speech into text or make actions based on what is said to the system. Typical applications include dictation, automatic transcription of large audio or video databases, speech-controlled user interfaces, and automated telephone services, for example. If the recognition system is not limited to a certain topic and vocabulary, covering the words in the target languages as well as possible while maintaining a high recognition accuracy becomes an issue. The conventional way to model the target language, especially in English recognition systems, is to limit the recognition to the most common words of the language. A vocabulary of 60 000 words is usually enough to cover the language adequately for arbitrary topics. On the other hand, in morphologically rich languages, such as Finnish, Estonian and Turkish, long words can be formed by inflecting and compounding, which makes it difficult to cover the language adequately by vocabulary-based approaches. This thesis deals with methods that can be used to build efficient speech recognition systems for morphologically rich languages. Before training the statistical n-gram language models on a large text corpus, the words in the corpus are automatically segmented into smaller fragments, referred to as morphs. The morphs are then used as modelling units of the n-gram models instead of whole words. This makes it possible to train the model on the whole text corpus without limiting the vocabulary and enables the model to create even unseen words by joining morphs together. Since the segmentation algorithm is unsupervised and data-driven, it can be readily used for many languages. Speech recognition experiments are made on various Finnish recognition tasks and some of the experiments are also repeated on an Estonian task. It is shown that the morph-based language models reduce recognition errors when compared to word-based models. It seems to be important, however, that the n-gram models are allowed to use long morph contexts, especially if the morphs used by the model are short. This can be achieved by using growing and pruning algorithms to train variable-length n-gram models. The thesis also presents data structures that can be used for representing the variable-length n-gram models efficiently in recognition systems. By analysing the recognition errors made by Finnish recognition systems it is found out that speaker adaptive training and discriminative training methods help to reduce errors in different situations. The errors are also analysed according to word frequencies and manually defined error classes

    Reducing out-of-vocabulary in morphology to improve the accuracy in Arabic dialects speech recognition

    Get PDF
    This thesis has two aims: developing resources for Arabic dialects and improving the speech recognition of Arabic dialects. Two important components are considered: Pronunciation Dictionary (PD) and Language Model (LM). Six parts are involved, which relate to building and evaluating dialects resources and improving the performance of systems for the speech recognition of dialects. Three resources are built and evaluated: one tool and two corpora. The methodology that was used for building the multi-dialect morphology analyser involves the proposal and evaluation of linguistic and statistic bases. We obtained an overall accuracy of 94%. The dialect text corpora have four sub-dialects, with more than 50 million tokens. The multi-dialect speech corpora have 32 speech hours, which were collected from 52 participants. The resultant speech corpora have more than 67,000 speech files. The main objective is improvement in the PDs and LMs of Arabic dialects. The use of incremental methodology made it possible to check orthography and phonology rules incrementally. We were able to distinguish the rules that positively affected the PDs. The Word Error Rate (WER) improved by an accuracy of 5.3% in MSA and 5% in Levantine. Three levels of morphemes were used to improve the LMs of dialects: stem, prefix+stem and stem+suffix. We checked the three forms using two different types of LMs. Eighteen experiments are carried out on MSA, Gulf dialect and Egyptian dialect, all of which yielded positive results, showing that WERs were reduced by 0.5% to 6.8%

    Joint Morphological-Lexical Language Modeling (JMLLM) for Arabic

    No full text
    corecore