42 research outputs found

    Joint optimization of transceivers with decision feedback and bit loading

    Get PDF
    The transceiver optimization problem for MIMO channels has been considered in the past with linear receivers as well as with decision feedback (DFE) receivers. Joint optimization of bit allocation, precoder, and equalizer has in the past been considered only for the linear transceiver (transceiver with linear precoder and linear equalizer). It has also been observed that the use of DFE even without bit allocation in general results in better performance that linear transceivers with bit allocation. This paper provides a general study of this for transceivers with the zero-forcing constraint. It is formally shown that when the bit allocation, precoder, and equalizer are jointly optimized, linear transceivers and transceivers with DFE have identical performance in the sense that transmitted power is identical for a given bit rate and error probability. The developments of this paper are based on the generalized triangular decomposition (GTD) recently introduced by Jiang, Li, and Hager. It will be shown that a broad class of GTD-based systems solve the optimal DFE problem with bit allocation. The special case of a linear transceiver with optimum bit allocation will emerge as one of the many solutions

    MIMO Transceivers With Decision Feedback and Bit Loading: Theory and Optimization

    Get PDF
    This paper considers MIMO transceivers with linear precoders and decision feedback equalizers (DFEs), with bit allocation at the transmitter. Zero-forcing (ZF) is assumed. Considered first is the minimization of transmitted power, for a given total bit rate and a specified set of error probabilities for the symbol streams. The precoder and DFE matrices are optimized jointly with bit allocation. It is shown that the generalized triangular decomposition (GTD) introduced by Jiang, Li, and Hager offers an optimal family of solutions. The optimal linear transceiver (which has a linear equalizer rather than a DFE) with optimal bit allocation is a member of this family. This shows formally that, under optimal bit allocation, linear and DFE transceivers achieve the same minimum power. The DFE transceiver using the geometric mean decomposition (GMD) is another member of this optimal family, and is such that optimal bit allocation yields identical bits for all symbol streams—no bit allocation is necessary—when the specified error probabilities are identical for all streams. The QR-based system used in VBLAST is yet another member of the optimal family and is particularly well-suited when limited feedback is allowed from receiver to transmitter. Two other optimization problems are then considered: a) minimization of power for specified set of bit rates and error probabilities (the QoS problem), and b) maximization of bit rate for fixed set of error probabilities and power. It is shown in both cases that the GTD yields an optimal family of solutions

    Tomlinson-Harashima Precoding Based Transceiver Design for MIMO Relay Systems With Channel Covariance Information

    Get PDF
    In this paper, we investigate the performance of the Tomlinson-Harashima (TH) precoder based nonlinear transceiver design for a nonregenerative multiple-input multiple-output (MIMO) relay system assuming that the full channel state information (CSI) of the source-relay link is known, while only the channel covariance information (CCI) of the relay-destination link is available at the relay node. We first derive the structure of the optimal TH precoding matrix and the source precoding matrix that minimize the mean-squared error (MSE) of the signal waveform estimation at the destination. Then we develop an iterative algorithm to optimize the relay precoding matrix. To reduce the computational complexity of the iterative algorithm, we propose a simplified precoding matrices design scheme. Numerical results show that the proposed precoding matrices design schemes have a better bit-error-rate performance than existing algorithms

    Advanced multi-dimensional signal processing for wireless systems

    Get PDF
    Die florierende Entwicklung der drahtlosen Kommunikation erfordert innovative und fortschrittliche Signalverarbeitungsalgorithmen, die auf eine verbesserte Performance hinsichtlich der ZuverlĂ€ssigkeit, des Durchsatzes, der Effizienz und weiterer Faktoren abzielen. Die vorliegende Arbeit befasst sich mit der Lösung dieser Herausforderungen und prĂ€sentiert neue und faszinierende Fortschritte, um diesen Herausforderungen zu erfĂŒllen. HauptsĂ€chlich konzentrieren wir uns auf zwei innovative Aspekte der mehrdimensionalen Signalverarbeitung fĂŒr drahtlose Systeme, denen in den letzten Jahren große Aufmerksamkeit in der Forschung geschenkt wurde. Das sind MehrtrĂ€gerverfahren fĂŒr Multiple-Input Multiple-Output (MIMO) Systeme und die mehrdimensionale harmonische SchĂ€tzung (Harmonic Retrieval). Da es sich bei MIMO-Systemen und MehrtrĂ€gerverfahren um SchlĂŒsseltechnologien der drahtlosen Kommunikation handelt, sind ihre zahlreichen Vorteile seit langem bekannt und haben ein großes Forschungsinteresse geweckt. Zu diesen Vorteilen zĂ€hlen zum Beispiel die Steigerung der Datenrate und die Verbesserung der VerbindungszuverlĂ€ssigkeit. Insbesondere OFDM-basierte MIMO Downlink Systeme fĂŒr mehrere Teilnehmer (Multi-User MIMO Downlink Systems), die durch SDMA (Space-Division Multiple Access) getrennt werden, kombinieren die Vorteile von MIMO-Systemen mit denen von MehrtrĂ€ger-Modulationsverfahren. Sie sind wesentliche Elemente des IEEE 802.11ac Standards und werden ebenfalls fĂŒr 5G (die fĂŒnfte Mobilfunkgeneration) ausschlaggebend sein. Obwohl die bisherigen Arbeiten ĂŒber das Precoding (Vorcodierung) fĂŒr solche Multi-User MIMO Downlink Systeme schon fruchtbare Ergebnisse zeigten, werden neue Fortschritte benötigt, die den MehrtrĂ€ger-Charakter des Systems in einer effizienteren Weise ausnutzen oder auf eine höhere spektrale Effizienz des Gesamtsystems abzielen. Andererseits gilt die Filterbank-basierte MehrtrĂ€ger Modulation (Filter Bank-based Multi-Carrier modulation, FBMC) mit einem gut konzentrierten Spektrum und einer somit niedrigen Out-of-band Leackage als eine vielversprechende Alternative zu OFDM. FBMC ermöglicht eine effiziente Nutzung von Fragmenten im Frequenzspektrums, z. B. in 5G oder Breitband Professional Mobile Radio (PMR) Netzwerken. Jedoch leiden die vorhandenen Verfahren zur Sende- und-Empfangs-Verarbeitung fĂŒr FBMC-basierte MIMO Systeme unter EinschrĂ€nkungen in Bezug auf mehrere Aspekte, wie z. B. der erlaubten DimensionalitĂ€t des Systems und der zulĂ€ssigen FrequenzselektivitĂ€t des Kanals. Die Formen der MIMO Einstellungen, die in der Literatur untersucht wurden, sind noch begrenzt auf MIMO-Systeme fĂŒr einzelne Teilnehmer und vereinfachte Multi-User MIMO Systeme. Fortschrittlichere Techniken sind daher erforderlich, die diese EinschrĂ€nkungen der existierenden Verfahren aufheben. MIMO-Szenarien, die weniger EinschrĂ€nkungen unterliegen, mĂŒssen außerdem untersucht werden, um die Vorteile von FBMC zu weiter herauszuarbeiten. Im Rahmen der mehrdimensionalen harmonischen SchĂ€tzung (Harmonic Retrieval) hat sich gezeigt, dass eine höhere Genauigkeit bei der SchĂ€tzung durch Tensoren erreicht werden kann. Das liegt daran, dass die Darstellung mehrdimensionaler Signale mit Tensoren eine natĂŒrlichere Beschreibung und eine gute Ausnutzung ihrer mehrdimensionalen Struktur erlaubt, z. B. fĂŒr die ModellordnungsschĂ€tzung und die UnterraumschĂ€tzung. Wichtige offene Themen umfassen die statistische Robustheit und wie man die SchĂ€tzung in zeitlich variierenden Szenarien adaptiv gestalten kann. In Teil I dieser Arbeit prĂ€sentieren wir zunĂ€chst eine effiziente und flexible Übertragungsstrategie fĂŒr OFDM-basierten Multi-User MIMO Downlink Systeme. Sie besteht aus einer rĂ€umlichen Scheduling-Methode, der effizienten MehrtrĂ€ger ProSched (Efficient Multi-Carrier ProSched, EMC-ProSched) Erweiterung mit einer effektiven Scheduling-Metrik, die auf MehrtrĂ€ger-Systeme zugeschnitten wird. Weiterhin werden zwei neuartige Precoding Algorithmen vorgestellt, die lineare Precoding-basierte geometrische Mittelwert-Zerlegung (Linear Precoding-based Geometric Mean Decomposition, LP-GMD) und ein Coordinated Beamforming Algorithmus geringer KomplexitĂ€t (Low Complexity Coordinated Beamforming, LoCCoBF). Diese beiden neuen Precoding-Verfahren können flexibel entsprechend den Abmessungen des Systems gewĂ€hlt werden. Wir entwickeln auch einen System Level-Simulator, in dem die Parameter fĂŒr das Link-to-System Level Interface kalibriert werden können. Diese Kalibrierung ist Standard-spezifisch, z. B. kann der Standard IEEE 802.11ac gewĂ€hlt werden. Numerische Ergebnisse zeigen, dass diese Übertragungsstrategie Scheduling Fairness garantiert, einen weitaus höheren Durchsatz als die existierenden Verfahren erzielt, eine geringere KomplexitĂ€t besitzt und nur einen geringen Signalisierungsoverhead erfordert. Der Schwerpunkt des Rests von Teil I bilden MIMO Systeme basierend auf Filter Bank-basierten MehrtrĂ€ger-Verfahren mit Offset Quadrature Amplitude Modulation (FBMC/OQAM). Es wird ein umfassender Überblick ĂŒber FBMC gegeben. Nachfolgend werden fĂŒr verschiedene FBMC/OQAM-basierte MIMO Varianten neue Verfahren zur Sende- und Empfangs-Verarbeitung entwickelt, die unterschiedliche Grade von Frequenz-SelektivitĂ€t des Kanals voraussetzen. ZunĂ€chst wird die Verwendung von weitgehend linearer Verarbeitung (widely linear processing) untersucht. Ein Zwei-Schritt-EmpfĂ€nger wird fĂŒr FBMC/OQAM-basierte MIMO Systeme mit einzelnen Teilnehmern entwickelt. Hierbei ist die Frequenz-SelektivitĂ€t des Kanals niedrig. Verglichen mit linearen MMSE-EmpfĂ€nger ist die Leistung des Zwei-Schritt-EmpfĂ€ngers viel besser. Das Grundprinzip dieser Zwei-Schritt-EmpfĂ€nger ist zuerst die Verringerung der intrinsischen Interferenz, um die Ausnutzung von nicht-zirkulĂ€ren Signalen zu ermöglichen. Es motiviert weitere Studien ĂŒber weitgehend lineare Verfahren fĂŒr FBMC/OQAM-basierte Systeme. DarĂŒber hinaus werden zwei Coordinated Beamforming-Algorithmen fĂŒr FBMC/OQAM-basierte MIMO Systeme mit einzelnen Teilnehmern entwickelt. Sie verzichten auf die EinschrĂ€nkung der DimensionalitĂ€t der bestehenden Methode, bei der die Anzahl der Sendeantennen grĂ¶ĂŸer als die Anzahl der Empfangsantennen sein muss. Der Kanal auf jedem TrĂ€ger wird als flacher Schwund (Flat Fading) modelliert, was einer Klassifizierung als „intermediate frequency selective channel“ entspricht. Unter der Kenntnis der Kanalzustandsinformation am Sender (Channel-State-Information at the Transmitter, CSIT) basiert die Vorcodierung entweder auf einem Zero Forcing (ZF) Kriterium oder auf der Maximierung der Signal-to-Leackage-plus-Noise-Ratio (SLNR). Die Vorcodierungsvektoren und die Empfangsvektoren werden gemeinsam und iterativ berechnet. Daher fĂŒhren die zwei Coordinated Beamforming-Algorithmen zu einer wirksamen Verringerung der intrinsischen Interferenz in FBMC/OQAM-basierten Systemen. Die Vorteile der Coordinated Beamforming-Konzepte werden in FBMC/OQAM-basierten Multi-User MIMO Downlink Systeme und koordinierte Mehrpunktverbindung (Coordinated Multi-Point, CoMP-Konzepte) eingebracht. DafĂŒr werden drei intrinsische Interferenz mildernde koordinierte Beamforming-Verfahren (Intrinsic Interference Mitigating Coordinated Beamforming, IIM-CBF) vorgeschlagen. Die ersten beiden IIM-CBF Algorithmen werden fĂŒr die FBMC/OQAM-basierten Multi-User MIMO Downlink Varianten mit unterschiedlichen Dimensionen entwickelt. Es wird gezeigt, dass diese Verfahren zu einer AbschwĂ€chung der Multi-User-Interferenz (MUI) sowie einer Verringerung der intrinsischen Interferenz fĂŒhren. Bei der dritten IIM-CBF Methode wird ein neuartiges FBMC/OQAM-basiertes-CoMP Konzept vorgestellt. Dieses wird durch die gemeinsame Übertragung von benachbarten Zellen zu Teilnehmern, die sich am Zellenrand befinden, ermöglicht, um den Daten-Durchsatz am Zellenrand zu erhöhen. Die LeistungsfĂ€higkeit der vorgeschlagenen Algorithmen wird durch umfangreiche numerische Simulationen evaluiert. Das Konvergenzverhalten wird untersucht sowie das Thema der KomplexitĂ€t angesprochen. Außerdem wird die geringere AnfĂ€lligkeit von FBMC verglichen mit OFDM gegenĂŒber Frequenzsynchronisationsfehlern demonstriert. DarĂŒber hinaus wird auf die FBMC/OQAM-basierten Multi-User MIMO Downlink Systeme mit stark frequenzselektiven KanĂ€len eingegangen. DafĂŒr werden Lösungen erarbeitet, die fĂŒr die UnterdrĂŒckung der MUI, der Inter-Symbol Interferenz (ISI) sowie der Inter-Carrier Interferenz (ICI) anwendbar ist. Mehrere Kriterien der multi-tap Vorcodierung werden entwickelt, beispielsweise die Mean Squared Error (MSE) Minimierung sowie die Signal-to-Leakage-Ratio (SLR) und die SLNR Maximierung. An EndgerĂ€ten, die eine schwĂ€chere Rechenleistung besitzen als sie an der Basisstation vorhanden ist, wird dadurch nur ein single-tap Empfangsfilter benötigt. Teil II der Arbeit konzentriert sich auf die mehrdimensionale harmonische SchĂ€tzung (Harmonic Retrieval). Der Einbau von statistischer Robustheit in mehrdimensionale ModellordnungsschĂ€tzverfahren wird demonstriert.The thriving development of wireless communications calls for innovative and advanced signal processing techniques targeting at an enhanced performance in terms of reliability, throughput, robustness, efficiency, flexibility, etc.. This thesis addresses such a compelling demand and presents new and intriguing progress towards fulfilling it. We mainly concentrate on two advanced multi-dimensional signal processing challenges for wireless systems that have attracted tremendous research attention in recent years, multi-carrier Multiple-Input Multiple-Output (MIMO) systems and multi-dimensional harmonic retrieval. As the key technologies of wireless communications, the numerous benefits of MIMO and multi-carrier modulation, e.g., boosting the data rate and improving the link reliability, have long been identified and have ignited great research interest. In particular, the Orthogonal Frequency Division Multiplexing (OFDM)-based multi-user MIMO downlink with Space-Division Multiple Access (SDMA) combines the twofold advantages of MIMO and multi-carrier modulation. It is the essential element of IEEE 802.11ac and will also be crucial for the fifth generation of wireless communication systems (5G). Although past investigations on scheduling and precoding design for multi-user MIMO downlink systems have been fruitful, new advances are desired that exploit the multi-carrier nature of the system in a more efficient manner or aim at a higher spectral efficiency. On the other hand, a Filter Bank-based Multi-Carrier modulation (FBMC) featuring a well-concentrated spectrum and thus a low out-of-band radiation is regarded as a promising alternative multi-carrier scheme to OFDM for an effective utilization of spectrum fragments, e.g., in 5G or broadband Professional Mobile Radio (PMR) networks. Unfortunately, the existing transmit-receive processing schemes for FBMC-based MIMO systems suffer from limitations in several aspects, e.g., with respect to the number of supported receive antennas (dimensionality constraint) and channel frequency selectivity. The forms of MIMO settings that have been investigated are still limited to single-user MIMO and simplified multi-user MIMO systems. More advanced techniques are therefore demanded to alleviate the constraints imposed on the state-of-the-art. More sophisticated MIMO scenarios are yet to be explored to further corroborate the benefits of FBMC. In the context of multi-dimensional harmonic retrieval, it has been demonstrated that a higher estimation accuracy can be achieved by using tensors to preserve and exploit the multidimensional nature of the data, e.g., for model order estimation and subspace estimation. Crucial pending topics include how to further incorporate statistical robustness and how to handle time-varying scenarios in an adaptive manner. In Part I of this thesis, we first present an efficient and flexible transmission strategy for OFDM-based multi-user MIMO downlink systems. It consists of a spatial scheduling scheme, efficient multi-carrier ProSched (EMC-ProSched), with an effective scheduling metric tailored for multi-carrier systems and two new precoding algorithms, linear precoding-based geometric mean decomposition (LP-GMD) and low complexity coordinated beamforming (LoCCoBF). These two new precoding schemes can be flexibly chosen according to the dimensions of the system. We also develop a system-level simulator where the parameters for the link-to-system level interface can be calibrated according to a certain standardization framework, e.g., IEEE 802.11ac. Numerical results show that the proposed transmission strategy, apart from guaranteeing the scheduling fairness and a small signaling overhead, achieves a much higher throughput than the state-of-the-art and requires a lower complexity. The remainder of Part I is dedicated to Filter Bank-based Multi-Carrier with Offset Quadrature Amplitude Modulation (FBMC/OQAM)-based MIMO systems. We begin with a thorough overview of FBMC. Then we present new transmit-receive processing techniques for FBMC/OQAM-based MIMO settings ranging from the single-user MIMO case to the Coordinated Multi-Point (CoMP) downlink considering various degrees of channel frequency selectivity. The use of widely linear processing is first investigated. A two-step receiver is designed for FBMC/OQAM-based point-to-point MIMO systems with low frequency selective channels. It exhibits a significant performance superiority over the linear MMSE receiver. The rationale in this two-step receiver is that the intrinsic interference is first mitigated to facilitate the exploitation of the non-circularity residing in the signals. It sheds light upon further studies on widely linear processing for FBMC/OQAM-based systems. Moreover, two coordinated beamforming algorithms are devised for FBMC/OQAM-based point-to-point MIMO systems to relieve the dimensionality constraint of existing schemes that the number of transmit antennas must be larger than the number of receive antennas. The channel on each subcarrier is assumed to be flat fading, which is categorized as the class of intermediate frequency selective channels. With the Channel State Information at the Transmitter (CSIT) known, the precoder designed based on a Zero Forcing (ZF) criterion or the maximization of the Signal-to-Leakage-plus-Noise-Ratio (SLNR) is jointly and iteratively computed with the receiver, leading to an effective mitigation of the intrinsic interference inherent in FBMC/OQAM-based systems. The benefits of the coordinated beamforming concept are successfully translated into the FBMC/OQAM-based multi-user MIMO downlink and the CoMP downlink. Three intrinsic interference mitigating coordinated beamforming (IIM-CBF) schemes are developed. The first two IIM-CBF schemes are proposed for FBMC/OQAM-based multi-user MIMO downlink settings with different dimensions and are able to effectively suppress the Multi-User Interference (MUI) as well as the intrinsic interference. A novel FBMC/OQAM-based CoMP concept is established via the third IIM-CBF scheme which enables the joint transmission of adjacent cells to the cell edge users to combat the strong interference as well as the heavy path loss and to boost the cell edge throughput. The performance of the proposed algorithms is evaluated via extensive numerical simulations. Their convergence behavior is studied, and the complexity issue is also addressed. In addition, the stronger resilience of FBMC over OFDM against frequency misalignments is demonstrated. Furthermore, we cover the case of highly frequency selective channels and provide solutions to the very challenging task of suppressing the MUI, the Inter-Symbol Interference (ISI), as well as the Inter-Carrier Interference (ICI) and supporting per-user multi-stream transmissions. Several design criteria of the multi-tap precoders are devised including the Mean Squared Error (MSE) minimization as well as the Signal-to-Leakage-Ratio (SLR) and SLNR maximization. By rendering a larger computational load at the base station, only single-tap spatial receive filters are required at the user terminals with a weaker computational capability, which enhances the applicability of the proposed schemes in real-world multi-user MIMO downlink systems. Part II focuses on the context of multi-dimensional harmonic retrieval. We demonstrate the incorporation of statistical robustness into multi-dimensional model order estimation schemes by substituting the sample covariance matrices of the unfoldings of the measurement tensor with robust covariance estimates. It is observed that in the presence of a very severe contamination of the measurements due to brief sensor failures, the robustified tensor-based model order estimation schemes lead to a satisfactory estimation accuracy. This philosophy of introducing statistical robustness also inspires robust versions of parameter estimation algorithms. Last but not the least, we present a generic framework for Tensor-based subspace tracking via Kronecker-structured projections (TeTraKron) for time-varying multi-dimensional harmonic retrieval problems. It allows to extend arbitrary matrix-based subspace tracking schemes to track the tensor-based subspace estimate in an elegant and efficient manner. By including forward-backward-averaging, we show that TeTraKron can also be employed to devise real-valued tensor-based subspace tracking algorithms. Taking a few matrix-based subspace tracking approaches as an example, a remarkable improvement of the tracking accuracy is observed in case of the TeTraKron-based tensor extensions. The performance of ESPRIT-type parameter estimation schemes is also assessed where the subspace estimates obtained by the proposed TeTraKron-based subspace tracking algorithms are used. We observe that Tensor-ESPRIT combined with a tensor-based subspace tracking scheme significantly outperforms the combination of standard ESPRIT and the corresponding matrix-based subspace tracking method. These results open the way for robust multi-dimensional big data signal processing applications in time-varying environments

    On Linear Transmission Systems

    Get PDF
    This thesis is divided into two parts. Part I analyzes the information rate of single antenna, single carrier linear modulation systems. The information rate of a system is the maximum number of bits that can be transmitted during a channel usage, and is achieved by Gaussian symbols. It depends on the underlying pulse shape in a linear modulated signal and also the signaling rate, the rate at which the Gaussian symbols are transmitted. The object in Part I is to study the impact of both the signaling rate and the pulse shape on the information rate. Part II of the thesis is devoted to multiple antenna systems (MIMO), and more specifically to linear precoders for MIMO channels. Linear precoding is a practical scheme for improving the performance of a MIMO system, and has been studied intensively during the last four decades. In practical applications, the symbols to be transmitted are taken from a discrete alphabet, such as quadrature amplitude modulation (QAM), and it is of interest to find the optimal linear precoder for a certain performance measure of the MIMO channel. The design problem depends on the particular performance measure and the receiver structure. The main difficulty in finding the optimal precoders is the discrete nature of the problem, and mostly suboptimal solutions are proposed. The problem has been well investigated when linear receivers are employed, for which optimal precoders were found for many different performance measures. However, in the case of the optimal maximum likelihood (ML) receiver, only suboptimal constructions have been possible so far. Part II starts by proposing new novel, low complexity, suboptimal precoders, which provide a low bit error rate (BER) at the receiver. Later, an iterative optimization method is developed, which produces precoders improving upon the best known ones in the literature. The resulting precoders turn out to exhibit a certain structure, which is then analyzed and proved to be optimal for large alphabets

    Joint Unitary Triangularization for MIMO Networks

    Full text link
    This work considers communication networks where individual links can be described as MIMO channels. Unlike orthogonal modulation methods (such as the singular-value decomposition), we allow interference between sub-channels, which can be removed by the receivers via successive cancellation. The degrees of freedom earned by this relaxation are used for obtaining a basis which is simultaneously good for more than one link. Specifically, we derive necessary and sufficient conditions for shaping the ratio vector of sub-channel gains of two broadcast-channel receivers. We then apply this to two scenarios: First, in digital multicasting we present a practical capacity-achieving scheme which only uses scalar codes and linear processing. Then, we consider the joint source-channel problem of transmitting a Gaussian source over a two-user MIMO channel, where we show the existence of non-trivial cases, where the optimal distortion pair (which for high signal-to-noise ratios equals the optimal point-to-point distortions of the individual users) may be achieved by employing a hybrid digital-analog scheme over the induced equivalent channel. These scenarios demonstrate the advantage of choosing a modulation basis based upon multiple links in the network, thus we coin the approach "network modulation".Comment: Submitted to IEEE Tran. Signal Processing. Revised versio

    Precoded FIR and Redundant V-BLAST Systems for Frequency-Selective MIMO Channels

    Get PDF
    The vertical Bell labs layered space-time (V-BLAST) system is a multi-input multioutput (MIMO) system designed to achieve good multiplexing gain. In recent literature, a precoder, which exploits channel information, has been added in the V-BLAST transmitter. This precoder forces each symbol stream to have an identical mean square error (MSE). It can be viewed as an alternative to the bit-loading method. In this paper, this precoded V-BLAST system is extended to the case of frequency-selective MIMO channels. Both the FIR and redundant types of transceivers, which use cyclic-prefixing and zero-padding, are considered. A fast algorithm for computing a cyclic-prefixing-based precoded V-BLAST transceiver is developed. Experiments show that the proposed methods with redundancy have better performance than the SVD-based system with optimal powerloading and bit loading for frequency-selective MIMO channels. The gain comes from the fact that the MSE-equalizing precoder has better bit-error rate performance than the optimal bitloading method
    corecore