57 research outputs found

    Wireless transmission protocols using relays for broadcast and information exchange channels

    No full text
    Relays have been used to overcome existing network performance bottlenecks in meeting the growing demand for large bandwidth and high quality of service (QoS) in wireless networks. This thesis proposes several wireless transmission protocols using relays in practical multi-user broadcast and information exchange channels. The main theme is to demonstrate that efficient use of relays provides an additional dimension to improve reliability, throughput, power efficiency and secrecy. First, a spectrally efficient cooperative transmission protocol is proposed for the multiple-input and singleoutput (MISO) broadcast channel to improve the reliability of wireless transmission. The proposed protocol mitigates co-channel interference and provides another dimension to improve the diversity gain. Analytical and simulation results show that outage probability and the diversity and multiplexing tradeoff of the proposed cooperative protocol outperforms the non-cooperative scheme. Second, a two-way relaying protocol is proposed for the multi-pair, two-way relaying channel to improve the throughput and reliability. The proposed protocol enables both the users and the relay to participate in interference cancellation. Several beamforming schemes are proposed for the multi-antenna relay. Analytical and simulation results reveal that the proposed protocol delivers significant improvements in ergodic capacity, outage probability and the diversity and multiplexing tradeoff if compared to existing schemes. Third, a joint beamforming and power management scheme is proposed for multiple-input and multiple-output (MIMO) two-way relaying channel to improve the sum-rate. Network power allocation and power control optimisation problems are formulated and solved using convex optimisation techniques. Simulation results verify that the proposed scheme delivers better sum-rate or consumes lower power when compared to existing schemes. Fourth, two-way secrecy schemes which combine one-time pad and wiretap coding are proposed for the scalar broadcast channel to improve secrecy rate. The proposed schemes utilise the channel reciprocity and employ relays to forward secret messages. Analytical and simulation results reveal that the proposed schemes are able to achieve positive secrecy rates even when the number of users is large. All of these new wireless transmission protocols help to realise better throughput, reliability, power efficiency and secrecy for wireless broadcast and information exchange channels through the efficient use of relays

    Performance Improvement in Muli-user MIMO Networks via Interference Alignment

    Get PDF
    Almost all wireless networks are interference limited. Interference management has been always a primary concern for large section of current wireless networks with exponentially growing devices, lack of centralized medium access, power management. Because of broadcast nature of the wireless channel, all signals from simultaneous transmissions from devices apart in the same space, are added to the desired signal at the receiver end. Therefore optimal spectrum efficiency in such systems mandates distributed, low complexity interference management strategies with very less overhead which should be far more superior than existing successive interference cancellation, highly complex multiuser detection techniques. In this thesis, a novel interference management scheme- “Interference alignment” scheme for multi user scenario is investigated and analysed supporting the arguments with numerical results for most scenarios. Firstly, the concept of interference channel, Degrees of Freedom were well established which are prerequisite in understanding the predicament of multi user wireless channels. Later on, interference alignment concept has been put forward stating its origin back from linear algebra. IA for K-user MIMO is studied. In a fully connected K-user network with perfect channel state information, IA minimizes the interference space dimension at intended receivers thus maximizing the achievable capacity of the entire channel and increasing the Multiplexing gain. Later on the idea of IA is extended to multi-hop networks. A practical cellular multi-hop wireless network is considered and distributed interference alignment technique is implemented which shows superior performance even in high interference case. All IA schemes assume that the channels are full rank richly scattered environments which in practise is not always possible. The idea of using relays to act as external scatters which increase the rank of effective channel observed is considered. So two novel distributed relaying schemes have been proposed modifying the existing IA scheme to fit the case for rank deficient channels and still achieve multiplexing gain on par with full rank channels. The proposed algorithms doesn’t require global channel state information at all nodes except at relay nodes, doesn’t need large symbol extensions, and still are able to enhance the sum capacity of the networ

    Interference reduction in multiuser relay networks

    Get PDF
    In future multiuser wireless systems, the limited system resources have to be extensively reused for serving several users. This results in received interferences at the users which limit the performance of the system. A scenario with several source-destination node pairs communicating unidirectionally through a shared medium is considered. The communication among the nodes is assisted by some relays and takes place in two time slots. The present dissertation focuses on investigating how the relay and the filter coefficients can be smartly adjusted such that the system performance is enhanced.In zukünftigen Mehrbenutzerfunksystemen müssen die begrenzten Systemressourcen intensiv wiederverwendet werden. Dadurch empfangen die Benutzer Interferenzsignale, sodass die Performanz des Funksystems begrenzt wird. Es wird ein Szenario, bestehend aus mehreren Paaren von Quell- und Zielknoten, betrachtet. Die Knotenpaare kommunizieren unidirektional miteinander durch ein Relay. Diese Dissertation konzentriert sich auf die Untersuchung, wie die Relay- und die Filterkoeffizienten intelligent angepasst werden können, sodass die Performanz des Funksystems erhöht wird

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    Two-Way Relaying Using Constant Envelope Modulation and Phase-Superposition-Phase-Forward

    Get PDF
    In this article, we propose the idea of phase-superposition-phase-forward (PSPF) relaying for 2-way 3-phasecooperative network involving constant envelope modulation with discriminator detection in a time-selectiveRayleigh fading environment. A semi-analytical expression for the bit-error-rate (BER) of this system is derived andthe results are verified by simulation. It was found that, compared to one-way relaying, 2-way relaying with PSPFsuffers only a moderate loss in energy efficiency (of 1.5 dB). On the other hand, PSPF improves the transmissionefficiency by 33%. Furthermore, we believe that the loss in transmission efficiency can be reduced if power isallocated to the different nodes in this cooperative network in an ‘optimal’ fashion. To further put the performanceof the proposed PSPF scheme into perspective, we compare it against a phase-combining phase-forwardtechnique that is based on decode-and-forward (DF) and multi-level CPFSK re-modulation at the relay. It wasfound that DF has a higher BER than PSPF and requires additional processing at the relay. It can thus beconcluded that the proposed PSPF technique is indeed the preferred way to maintain constant envelope signalingthroughout the signaling chain in a 2-way 3 phase relaying system
    corecore