47 research outputs found

    Joint Extraction of Entities and Relations Based on a Novel Tagging Scheme

    Full text link
    Joint extraction of entities and relations is an important task in information extraction. To tackle this problem, we firstly propose a novel tagging scheme that can convert the joint extraction task to a tagging problem. Then, based on our tagging scheme, we study different end-to-end models to extract entities and their relations directly, without identifying entities and relations separately. We conduct experiments on a public dataset produced by distant supervision method and the experimental results show that the tagging based methods are better than most of the existing pipelined and joint learning methods. What's more, the end-to-end model proposed in this paper, achieves the best results on the public dataset

    Contrastive Triple Extraction with Generative Transformer

    Full text link
    Triple extraction is an essential task in information extraction for natural language processing and knowledge graph construction. In this paper, we revisit the end-to-end triple extraction task for sequence generation. Since generative triple extraction may struggle to capture long-term dependencies and generate unfaithful triples, we introduce a novel model, contrastive triple extraction with a generative transformer. Specifically, we introduce a single shared transformer module for encoder-decoder-based generation. To generate faithful results, we propose a novel triplet contrastive training object. Moreover, we introduce two mechanisms to further improve model performance (i.e., batch-wise dynamic attention-masking and triple-wise calibration). Experimental results on three datasets (i.e., NYT, WebNLG, and MIE) show that our approach achieves better performance than that of baselines.Comment: Accepted by AAAI 202

    A Hierarchical Framework for Relation Extraction with Reinforcement Learning

    Full text link
    Most existing methods determine relation types only after all the entities have been recognized, thus the interaction between relation types and entity mentions is not fully modeled. This paper presents a novel paradigm to deal with relation extraction by regarding the related entities as the arguments of a relation. We apply a hierarchical reinforcement learning (HRL) framework in this paradigm to enhance the interaction between entity mentions and relation types. The whole extraction process is decomposed into a hierarchy of two-level RL policies for relation detection and entity extraction respectively, so that it is more feasible and natural to deal with overlapping relations. Our model was evaluated on public datasets collected via distant supervision, and results show that it gains better performance than existing methods and is more powerful for extracting overlapping relations.Comment: To appear in AAAI 1

    Relation Extraction using Explicit Context Conditioning

    Full text link
    Relation Extraction (RE) aims to label relations between groups of marked entities in raw text. Most current RE models learn context-aware representations of the target entities that are then used to establish relation between them. This works well for intra-sentence RE and we call them first-order relations. However, this methodology can sometimes fail to capture complex and long dependencies. To address this, we hypothesize that at times two target entities can be explicitly connected via a context token. We refer to such indirect relations as second-order relations and describe an efficient implementation for computing them. These second-order relation scores are then combined with first-order relation scores. Our empirical results show that the proposed method leads to state-of-the-art performance over two biomedical datasets.Comment: Accepted for Publication at NAACL 201

    End-to-end neural relation extraction using deep biaffine attention

    Full text link
    We propose a neural network model for joint extraction of named entities and relations between them, without any hand-crafted features. The key contribution of our model is to extend a BiLSTM-CRF-based entity recognition model with a deep biaffine attention layer to model second-order interactions between latent features for relation classification, specifically attending to the role of an entity in a directional relationship. On the benchmark "relation and entity recognition" dataset CoNLL04, experimental results show that our model outperforms previous models, producing new state-of-the-art performances.Comment: Proceedings of the 41st European Conference on Information Retrieval (ECIR 2019), to appea
    corecore