12 research outputs found

    Experimental Analysis of A-RoF Based Optical Communication System for 6G O-RAN Downlink

    Get PDF
    This paper explores recent advancements in optical communication for sixth generation (6G) networks, focusing on the proposed architecture, Open Radio Access Network (O-RAN) specifications, and Radio over Fiber (RoF) systems. Experimental evaluation of 6G Analog RoF, utilizing 60 GHz and 28 GHz carriers over 10 km single mode fiber, demonstrates the efficacy of Digital Pre-Distortion (DPD) linearization in reducing Error Vector Magnitude (EVM). Despite the observed rise in EVM with increased bandwidth, slight performance improvements are facilitated by DPD. This underscores the significance of ongoing advancements in mitigating challenges and harnessing the full potential of 6G Analog RoF (A-RoF) technology for upcoming O-RAN. These developments are poised to transform communication networks, ensuring enhanced speed, reliability, and efficiency to meet the dynamic demands of the digital landscape in the upcoming 6G era and beyond.</p

    Dynamically Energy-Efficient Resource Allocation in 5G CRAN Using Intelligence Algorithm

    Get PDF
    5G network is the next generation for cellular networks to overcome the challenges and limitations of the 4G network.&nbsp; Cloud Radio Access Network(C-RAN) is providing solutions for cost-efficient and power-efficient solutions for the 5G network.&nbsp;&nbsp; The aim of this paper proposed an energy-efficient C-RAN to minimize the cost of the network by dynamically allocating BBU resources to RRHs as per facing traffic, and also minimize the energy consumption of centralized BBU resources that affect dynamically allocate of RRHs.&nbsp; Particle Swarm Optimization (PSO) algorithm is a Swarm Intelligence algorithm for optimization of mapping between BBU-RRH for resource allocation in C-RAN.&nbsp; The main objective of the paper is as per resource usage in C-RAN the BBU is put in the active or in-active mode to minimize energy consumption in C-RAN of 5G technology. As per our proposed C-RANapplication, the proposed PSO algorithm 90% minimizes energy consumption and maximizes energy efficiency compared with existing work

    Wireless body area network mobility-aware task offloading scheme

    Get PDF
    The increasing amount of user equipment (UE) and the rapid advances in wireless body area networks bring revolutionary changes in healthcare systems. However, due to the strict requirements on size, reliability and battery lifetime of UE devices, it is difficult for them to execute latency sensitive or computation intensive tasks effectively. In this paper, we aim to enhance the UE computation capacity by utilizing small size coordinator-based mobile edge computing (C-MEC) servers. In this way, the system complexity, computation resources, and energy consumption are considerably transferred from the UE to the C-MEC, which is a practical approach since C-MEC is power charged, in contrast to the UE. First, the system architecture and the mobility model are presented. Second, several transmission mechanisms are analyzed along with the proposed mobility-aware cooperative task offloading scheme. Numerous selected performance metrics are investigated regarding the number of executed tasks, the percentage of failed tasks, average service time, and the energy consumption of each MEC. The results validate the advantage of task offloading schemes compared with the traditional relay-based technique regarding the number of executed tasks. Moreover, one can obtain that the proposed scheme archives noteworthy benefits, such as low latency and efficiently balance the energy consumption of C-MECs

    Edge Computing-Enabled Cell-Free Massive MIMO Systems

    Full text link
    Mobile edge computing (MEC) has been introduced to provide additional computing capabilities at network edges in order to improve performance of latency critical applications. In this paper, we consider the cell-free (CF) massive MIMO framework with implementing MEC functionalities. We consider multiple types of users with different average time requirements for computing/processing the tasks, and consider access points (APs) with MEC servers and a central server (CS) with the cloud computing capability. After deriving successful communication and computing probabilities using stochastic geometry and queueing theory, we present the successful edge computing probability (SECP) for a target computation latency. Through numerical results, we also analyze the impact of the AP coverage and the offloading probability to the CS on the SECP. It is observed that the optimal probability of offloading to the CS in terms of the SECP decreases with the AP coverage. Finally, we numerically characterize the minimum required energy consumption for guaranteeing a desired level of SECP. It is observed that for any desired level of SECP, it is more energy efficient to have larger number of APs as compared to having more number of antennas at each AP with smaller AP density.Comment: Submitted to IEEE Transactions on Wireless Communication

    A Bilevel Optimization Approach for Joint Offloading Decision and Resource Allocation in Cooperative Mobile Edge Computing

    Get PDF
    This paper studies a multi-user cooperative mobile edge computing offloading (CoMECO) system in a multi-user interference environment, in which delay-sensitive tasks may be executed on local devices, cooperative devices, or the primary MEC server. In this system, we jointly optimize the offloading decision and computation resource allocation for minimizing the total energy consumption of all mobile users under the delay constraint. If this problem is solved directly, the offloading decision and computation resource allocation are generally generated separately at the same time. Note, however, that they are closely coupled. Therefore, under this condition, their dependency is not well considered, thus leading to poor performance. We transform this problem into a bilevel optimization problem, in which the offloading decision is generated in the upper level, and then the optimal allocation of computation resources is obtained in the lower level based on the given offloading decision. In this way, the dependency between the offloading decision and computation resource allocation can be fully taken into account. Subsequently, a bilevel optimization approach, called BiJOR, is proposed. In BiJOR, candidate modes are first pruned to reduce the number of infeasible offloading decisions. Afterward, the upper level optimization problem is solved by ant colony system (ACS). Furthermore, a sorting strategy is incorporated into ACS to construct feasible offloading decisions with a higher probability and a local search operator is designed in ACS to accelerate the convergence. For the lower level optimization problem, it is solved by the monotonic optimization method. In addition, BiJOR is extended to deal with a complex scenario with the channel selection. Extensive experiments are carried out to investigate the performance of BiJOR on two sets of instances with up to 400 mobile users. The experimental results demonstrate the effectiveness of BiJOR and the superiority of the CoMECO system
    corecore